List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critical review of bioceramics for magnetic hyperthermia. Journal of the American Ceramic Society, 2022, 105, 1723-1747.	1.9	29
2	Digital light processing stereolithography of hydroxyapatite scaffolds with boneâ€like architecture, permeability, and mechanical properties. Journal of the American Ceramic Society, 2022, 105, 1648-1657.	1.9	54
3	Pluronic F127/Doxorubicin microemulsions: Preparation, characterization, and toxicity evaluations. Journal of Molecular Liquids, 2022, 345, 117028.	2.3	37
4	Osteogenic Potential of Magnesium (Mg)-Doped Multicomponent Bioactive Glass: In Vitro and In Vivo Animal Studies. Materials, 2022, 15, 318.	1.3	18
5	Superparamagnetic and highly bioactive SPIONS/bioactive glass nanocomposite and its potential application in magnetic hyperthermia. Materials Science and Engineering C, 2022, 135, 112655.	3.8	5
6	Bioceramic coatings on metallic implants: An overview. Ceramics International, 2022, 48, 8987-9005.	2.3	62
7	Foam-Replicated Diopside/Fluorapatite/Wollastonite-Based Glass–Ceramic Scaffolds. Ceramics, 2022, 5, 120-130.	1.0	9
8	Iron (Fe)-doped mesoporous 45S5 bioactive glasses: Implications for cancer therapy. Translational Oncology, 2022, 20, 101397.	1.7	26
9	Printability of carboxymethyl cellulose/glass-containing inks for robocasting deposition in reversible solid oxide cell applications. Materials Letters, 2022, 318, 132239.	1.3	5
10	Stem <scp>cellâ€mediated</scp> angiogenesis in skin tissue engineering and wound healing. Wound Repair and Regeneration, 2022, 30, 421-435.	1.5	27
11	In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 74.	1.8	11
12	High-reliability data processing and calculation of microstructural parameters in hydroxyapatite scaffolds produced by vat photopolymerization. Journal of the European Ceramic Society, 2022, 42, 6206-6212.	2.8	12
13	Angiogenesis induction by bioactive glasses and glass-ceramics. , 2022, , 203-226.		0
14	New sol-gel-derived magnetic bioactive glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application. Materials Science and Engineering C, 2021, 120, 111692.	3.8	25
15	Robocasting of mesoporous bioactive glasses (MBGs) for bone tissue engineering. , 2021, , 327-349.		3
16	Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. Materials Science and Engineering C, 2021, 121, 111741.	3.8	65
17	Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions. Ceramics International, 2021, 47, 7738-7744.	2.3	23
18	Comprehensive assessment of bioactive glass and glass-ceramic scaffold permeability: experimental measurements by pressure wave drop, modelling and computed tomography-based analysis. Acta Biomaterialia, 2021, 119, 405-418.	4.1	21

#	Article	IF	CITATIONS
19	Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration. Gels Horizons: From Science To Smart Materials, 2021, , 191-227.	0.3	0
20	Bioactive Glasses and Glass-Ceramics. , 2021, , 614-623.		1
21	Oil-In-Water Microemulsion Encapsulation of Antagonist Drugs Prevents Renal Ischemia-Reperfusion Injury in Rats. Applied Sciences (Switzerland), 2021, 11, 1264.	1.3	15
22	Additive Manufacturing of Bioceramic Scaffolds for Bone Tissue Regeneration with Emphasis on Stereolithographic Processing. Gels Horizons: From Science To Smart Materials, 2021, , 297-331.	0.3	0
23	Micro computed tomography based finite element models for elastic and strength properties of 3D printed glass scaffolds. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 292-306.	1.5	9
24	Biomedical Radioactive Glasses for Brachytherapy. Materials, 2021, 14, 1131.	1.3	10
25	Assessment of SnFe2O4 Nanoparticles for Potential Application in Theranostics: Synthesis, Characterization, In Vitro, and In Vivo Toxicity. Materials, 2021, 14, 825.	1.3	21
26	Strategies for Cancer Treatment Based on Photonic Nanomedicine. Materials, 2021, 14, 1435.	1.3	17
27	F127/Cisplatin Microemulsions: In Vitro, In Vivo and Computational Studies. Applied Sciences (Switzerland), 2021, 11, 3006.	1.3	18
28	Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules, 2021, 26, 1510.	1.7	73
29	Biochemical, Ameliorative and Cytotoxic Effects of Newly Synthesized Curcumin Microemulsions: Evidence from In Vitro and In Vivo Studies. Nanomaterials, 2021, 11, 817.	1.9	28
30	Ceramic-on-ceramic catastrophic liner failure in total hip arthroplasty: Morphological and compositional analysis of fractured ceramic components. Ceramics International, 2021, 47, 11029-11036.	2.3	5
31	Foam Replica Method in the Manufacturing of Bioactive Glass Scaffolds: Out-of-Date Technology or Still Underexploited Potential?. Materials, 2021, 14, 2795.	1.3	29
32	Application of Response Surface Methodology for Optimizing the Therapeutic Activity of ZnO Nanoparticles Biosynthesized from Aspergillus niger. Biomimetics, 2021, 6, 34.	1.5	48
33	Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy. Materials, 2021, 14, 3337.	1.3	25
34	CoNiZn and CoNiFe Nanoparticles: Synthesis, Physical Characterization, and In Vitro Cytotoxicity Evaluations. Applied Sciences (Switzerland), 2021, 11, 5339.	1.3	14
35	Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. Materials, 2021, 14, 3706.	1.3	20
36	Study on the joining of ceramic matrix composites to an Al alloy for advanced brake systems. Ceramics International, 2021, 47, 23463-23473.	2.3	6

#	Article	IF	CITATIONS
37	Biological Evaluation of a New Sodium-Potassium Silico-Phosphate Glass for Bone Regeneration: In Vitro and In Vivo Studies. Materials, 2021, 14, 4546.	1.3	7
38	Fixation of Transparent Bone Pins with Photocuring Biocomposites. ACS Biomaterials Science and Engineering, 2021, 7, 4463-4473.	2.6	2
39	Al2O3 Preforms Infiltrated with Poly(methyl methacrylate) for Dental Prosthesis Manufacturing. Applied Sciences (Switzerland), 2021, 11, 7583.	1.3	3
40	CoNi alloy nanoparticles for cancer theranostics: synthesis, physical characterization, in vitro and in vivo studies. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	18
41	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	4.1	61
42	Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics, 2021, 4, 542-563.	1.0	88
43	MOF-Mediated Synthesis of CuO/CeO2 Composite Nanoparticles: Characterization and Estimation of the Cellular Toxicity against Breast Cancer Cell Line (MCF-7). Journal of Functional Biomaterials, 2021, 12, 53.	1.8	32
44	Silicate Glasses and Glass–Ceramics: Types, Role of Composition and Processing Methods. PoliTO Springer Series, 2021, , 119-152.	0.3	0
45	In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. Journal of Materials Science: Materials in Medicine, 2021, 32, 147.	1.7	23
46	Adsorption of Pb and Cd in rice husk and their immobilization in porous glassâ€eeramic structures. International Journal of Applied Ceramic Technology, 2020, 17, 105-112.	1.1	8
47	Vitrified and nonvitrified municipal solid wastes as ordinary Portland cement (OPC) and sand substitution in mortars. International Journal of Applied Ceramic Technology, 2020, 17, 573-583.	1.1	12
48	Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules, 2020, 25, 4559.	1.7	49
49	Sintering Behavior of a Six-Oxide Silicate Bioactive Glass for Scaffold Manufacturing. Applied Sciences (Switzerland), 2020, 10, 8279.	1.3	10
50	Biomedical Waste Management by Using Nanophotocatalysts: The Need for New Options. Materials, 2020, 13, 3511.	1.3	28
51	"Hard―ceramics for "Soft―tissue engineering: Paradox or opportunity?. Acta Biomaterialia, 2020, 115, 1-28.	4.1	63
52	Editorial: Bioceramics and Bioactive Glasses for Hard Tissue Regeneration. Frontiers in Materials, 2020, 7, .	1.2	2
53	Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nanomaterials, 2020, 10, 1609.	1.9	73
54	The Use of Simulated Body Fluid (SBF) for Assessing Materials Bioactivity in the Context of Tissue Engineering: Review and Challenges. Biomimetics, 2020, 5, 57.	1.5	98

#	Article	IF	CITATIONS
55	Bioactive Glasses and Glass/Polymer Composites for Neuroregeneration: Should We Be Hopeful?. Applied Sciences (Switzerland), 2020, 10, 3421.	1.3	19
56	Copper-Doped Ordered Mesoporous Bioactive Glass: A Promising Multifunctional Platform for Bone Tissue Engineering. Bioengineering, 2020, 7, 45.	1.6	29
57	Sintering effects of bioactive glass incorporation in tricalcium phosphate scaffolds. Materials Letters, 2020, 274, 128010.	1.3	7
58	Nanotechnology for angiogenesis: opportunities and challenges. Chemical Society Reviews, 2020, 49, 5008-5057.	18.7	135
59	Strontium- and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications. Materials, 2020, 13, 1348.	1.3	46
60	Regulation of the Ocular Cell/Tissue Response by Implantable Biomaterials and Drug Delivery Systems. Bioengineering, 2020, 7, 65.	1.6	16
61	Comparison between Bioactive Sol-Gel and Melt-Derived Glasses/Glass-Ceramics Based on the Multicomponent SiO2–P2O5–CaO–MgO–Na2O–K2O System. Materials, 2020, 13, 540.	1.3	57
62	Dolomite-Foamed Bioactive Silicate Scaffolds for Bone Tissue Repair. Materials, 2020, 13, 628.	1.3	27
63	3D Printing of Hierarchical Scaffolds Based on Mesoporous Bioactive Glasses (MBGs)—Fundamentals and Applications. Materials, 2020, 13, 1688.	1.3	42
64	Injectable bioactive glass-based pastes for potential use in bone tissue repair. Biomedical Glasses, 2020, 6, 23-33.	2.4	4
65	A Guided Walk through the World of Mesoporous Bioactive Glasses (MBGs): Fundamentals, Processing, and Applications. Nanomaterials, 2020, 10, 2571.	1.9	40
66	Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering. Biomedical Glasses, 2020, 6, 57-69.	2.4	22
67	Modelling the elastic mechanical properties of bioactive glass-derived scaffolds. Biomedical Glasses, 2020, 6, 50-56.	2.4	3
68	Bread-Derived Bioactive Porous Scaffolds: An Innovative and Sustainable Approach to Bone Tissue Engineering. Molecules, 2019, 24, 2954.	1.7	34
69	Curcumin: footprints on cardiac tissue engineering. Expert Opinion on Biological Therapy, 2019, 19, 1199-1205.	1.4	13
70	Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2019, 7, 161.	2.0	122
71	Elastic Mechanical Properties of 45S5-Based Bioactive Glass–Ceramic Scaffolds. Materials, 2019, 12, 3244.	1.3	30
72	Functionalization and Surface Modifications of Bioactive Glasses (BGs): Tailoring of the Biological Response Working on the Outermost Surface Layer. Materials, 2019, 12, 3696.	1.3	45

#	Article	IF	CITATIONS
73	Robocasting of SiO2-Based Bioactive Class Scaffolds with Porosity Gradient for Bone Regeneration and Potential Load-Bearing Applications. Materials, 2019, 12, 2691.	1.3	39
74	Processing methods for making porous bioactive glassâ€based scaffolds—A stateâ€ofâ€theâ€art review. International Journal of Applied Ceramic Technology, 2019, 16, 1762-1796.	1.1	93
75	Scaffolds for the repair of orbital wall defects. , 2019, , 401-419.		Ο
76	Quantifying the Adhesion of Silicate Glass–Ceramic Coatings onto Alumina for Biomedical Applications. Materials, 2019, 12, 1754.	1.3	3
77	Crystallization behavior of SiO2–P2O5–CaO–MgO–Na2O–K2O bioactive glass powder. Biomedical Glasses, 2019, 5, 46-52.	2.4	16
78	Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings, 2019, 9, 369.	1.2	23
79	Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Materials Science and Engineering C, 2019, 104, 109895.	3.8	185
80	Editorial note to the Special Issue "Advances in Bioceramics― International Journal of Applied Ceramic Technology, 2019, 16, 1752-1752.	1.1	0
81	Mesoporous bioactive glasses (MBGs) in cancer therapy: Full of hope and promise. Materials Letters, 2019, 251, 241-246.	1.3	54
82	Modelling the relationship between tensile strength and porosity in bioceramic scaffolds. International Journal of Applied Ceramic Technology, 2019, 16, 1823-1829.	1.1	3
83	Robocasting of Bioactive SiO ₂ -P ₂ O ₅ -CaO-MgO-Na ₂ O-K ₂ O Glass Scaffolds. Journal of Healthcare Engineering, 2019, 2019, 1-12.	1.1	32
84	Calcium carbonate: Adored and ignored in bioactivity assessment. Acta Biomaterialia, 2019, 91, 35-47.	4.1	72
85	Bioactive glass and glassâ€ceramic orbital implants. International Journal of Applied Ceramic Technology, 2019, 16, 1850-1863.	1.1	12
86	Using Bioactive Glasses in the Management of Burns. Frontiers in Bioengineering and Biotechnology, 2019, 7, 62.	2.0	47
87	Mechanical characterization of 45S5 bioactive glass-derived scaffolds. Materials Letters, 2019, 245, 14-17.	1.3	24
88	In Vitro Assessment of Bioactive Glass Coatings on Alumina/Zirconia Composite Implants for Potential Use in Prosthetic Applications. International Journal of Molecular Sciences, 2019, 20, 722.	1.8	23
89	Mechanical characterization of pore-graded bioactive glass scaffolds produced by robocasting. Biomedical Glasses, 2019, 5, 140-147.	2.4	16
90	Synthesis and physico-chemical characterization of fluoride (F)- and silver (Ag)-substituted sol-gel mesoporous bioactive glasses. Biomedical Glasses, 2019, 5, 185-192.	2.4	12

#	Article	IF	CITATIONS
91	Additive Manufacturing Methods for Producing Hydroxyapatite and Hydroxyapatite-Based Composite Scaffolds: A Review. Frontiers in Materials, 2019, 6, .	1.2	113
92	Newly-designed collagen/polyurethane bioartificial blend as coating on bioactive glass-ceramics for bone tissue engineering applications. Materials Science and Engineering C, 2019, 96, 218-233.	3.8	24
93	Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. Journal of Functional Biomaterials, 2019, 10, 3.	1.8	114
94	Can bioactive glasses be useful to accelerate the healing of epithelial tissues?. Materials Science and Engineering C, 2019, 97, 1009-1020.	3.8	74
95	Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Applied Sciences (Switzerland), 2019, 9, 174.	1.3	58
96	Production and characterization of ceramic foams derived from vitrified bottom ashes. Materials Letters, 2019, 236, 281-284.	1.3	22
97	Curcumin in tissue engineering: A traditional remedy for modern medicine. BioFactors, 2019, 45, 135-151.	2.6	53
98	Fe-doped bioactive glass-derived scaffolds produced by sol-gel foaming. Materials Letters, 2019, 235, 207-211.	1.3	47
99	Nanoengineered biomaterials for bone/dental regeneration. , 2019, , 13-38.		5
100	Multifunctional Bioactive Glasses and Glass-Ceramics: Beyond †Traditional' Bioactivity. , 2019, , 35-67.		1
101	Bioactive Glasses and Glass-Ceramics for Ophthalmological Applications. , 2019, , 357-382.		1
102	Functionally Graded Bioactive Glass-Derived Scaffolds Mimicking Bone Tissue. , 2019, , 443-466.		5
103	Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends in Biotechnology, 2018, 36, 430-444.	4.9	253
104	Quantifying the effect of particle size on the crystallization of 45S5 bioactive glass. Materials Letters, 2018, 224, 54-58.	1.3	24
105	Editorial note to the Special Issue "Bioceramics for healthcare― International Journal of Applied Ceramic Technology, 2018, 15, 819-819.	1.1	0
106	Bioactive solâ€gel glasses: Processing, properties, and applications. International Journal of Applied Ceramic Technology, 2018, 15, 841-860.	1.1	124
107	Microstructural characterization and robust comparison of ceramic porous orbital implants. Journal of the European Ceramic Society, 2018, 38, 2988-2993.	2.8	5
108	Additive manufacturing of bioactive glasses. Journal of 3D Printing in Medicine, 2018, 2, 47-49.	1.0	1

#	Article	IF	CITATIONS
109	Fabrication and morphological characterization of glassâ€ceramic orbital implants. International Journal of Applied Ceramic Technology, 2018, 15, 884-891.	1.1	7
110	Porous glass-ceramic orbital implants: A feasibility study. Materials Letters, 2018, 212, 12-15.	1.3	13
111	When size matters: Biological response to strontium- and cobalt-substituted bioactive glass particles. Materials Today: Proceedings, 2018, 5, 15768-15775.	0.9	15
112	Synergistic combination of bioactive glasses and polymers for enhanced bone tissue regeneration. Materials Today: Proceedings, 2018, 5, 15532-15539.	0.9	29
113	Biomedical applications of nanoceria: new roles for an old player. Nanomedicine, 2018, 13, 3051-3069.	1.7	87
114	Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. Acta Biomaterialia, 2018, 81, 1-19.	4.1	158
115	A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomaterialia, 2018, 79, 1-22.	4.1	293
116	Production and Physicochemical Characterization of Cu-Doped Silicate Bioceramic Scaffolds. Materials, 2018, 11, 1524.	1.3	20
117	Nanoscale Topographical Characterization of Orbital Implant Materials. Materials, 2018, 11, 660.	1.3	13
118	Bioactive glasses entering the mainstream. Drug Discovery Today, 2018, 23, 1700-1704.	3.2	96
119	Bioactive glasses – When glass science and technology meet regenerative medicine. Ceramics International, 2018, 44, 14953-14966.	2.3	82
120	Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia. Materials, 2018, 11, 173.	1.3	45
121	Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. Journal of Functional Biomaterials, 2018, 9, 24.	1.8	202
122	Bioactive Glasses: Where Are We and Where Are We Going?. Journal of Functional Biomaterials, 2018, 9, 25.	1.8	334
123	Bioactive sol-gel glass-coated wood-derived biocarbon scaffolds. Materials Letters, 2018, 232, 14-17.	1.3	7
124	Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Materials Science and Engineering C, 2017, 75, 688-698.	3.8	76
125	Quantifying the micro-architectural similarity of bioceramic scaffolds to bone. Ceramics International, 2017, 43, 9443-9450.	2.3	18
126	Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomaterialia, 2017, 58, 502-514.	4.1	139

#	Article	IF	CITATIONS
127	Glass-based coatings on biomedical implants: a state-of-the-art review. Biomedical Glasses, 2017, 3, 1-17.	2.4	76
128	How Did Bioactive Glasses Revolutionize Medical Science? A Tribute to Larry Hench. , 2017, , 1-34.		1
129	Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: a proof-of-concept study. Journal of Materials Science, 2017, 52, 9115-9128.	1.7	33
130	Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration. Journal of Materials Science, 2017, 52, 9103-9114.	1.7	49
131	Learning from Nature: Using bioinspired approaches and natural materials to make porous bioceramics. International Journal of Applied Ceramic Technology, 2017, 14, 507-520.	1.1	46
132	Micro-CT based finite element models for elastic properties of glass–ceramic scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 248-255.	1.5	30
133	Ceramics for bone replacement. , 2017, , 249-278.		5
134	Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering. Materials, 2017, 10, 1429.	1.3	64
135	Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity. Applied Sciences (Switzerland), 2017, 7, 1330.	1.3	31
136	Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review. Bioengineering, 2017, 4, 15.	1.6	39
137	Bone Structural Similarity Score: A Multiparametric Tool to Match Properties of Biomimetic Bone Substitutes with their Target Tissues. Journal of Applied Biomaterials and Functional Materials, 2016, 14, e277-e289.	0.7	10
138	Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances. Acta Biomaterialia, 2016, 42, 18-32.	4.1	226
139	Antibacterial Bioglassâ€Derived Scaffolds: Innovative Synthesis Approach and Characterization. International Journal of Applied Glass Science, 2016, 7, 238-247.	1.0	30
140	Engineered porous scaffolds for periprosthetic infection prevention. Materials Science and Engineering C, 2016, 68, 701-715.	3.8	29
141	Orbital implants: State-of-the-art review with emphasis on biomaterials and recent advances. Materials Science and Engineering C, 2016, 69, 1410-1428.	3.8	56
142	Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Acta Biomaterialia, 2016, 44, 97-109.	4.1	60
143	Bioceramics and Composites for Orbital Implants: Current Trends and Clinical Performance. , 2016, , 1249-1274.		1
144	Using porous bioceramic scaffolds to model healthy and osteoporotic bone. Journal of the European Ceramic Society, 2016, 36, 2175-2182.	2.8	52

#	Article	IF	CITATIONS
145	Novel antibacterial ocular prostheses: Proof of concept and physico-chemical characterization. Materials Science and Engineering C, 2016, 60, 467-474.	3.8	29
146	Mechanical characterization of glass-ceramic scaffolds at multiple characteristic lengths through nanoindentation. Journal of the European Ceramic Society, 2016, 36, 2403-2409.	2.8	27
147	Novel full-ceramic monoblock acetabular cup with a bioactive trabecular coating: design, fabrication and characterization. Ceramics International, 2016, 42, 6833-6845.	2.3	24
148	Design, selection and characterization of novel glasses and glass-ceramics for use in prosthetic applications. Ceramics International, 2016, 42, 1482-1491.	2.3	41
149	Bioactive glasses: Special applications outside the skeletal system. Journal of Non-Crystalline Solids, 2016, 432, 15-30.	1.5	221
150	Special Applications of Bioactive Glasses in Otology and Ophthalmology. Advanced Structured Materials, 2016, , 227-248.	0.3	1
151	Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic. Biomedical Glasses, 2015, 1, .	2.4	7
152	Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 202.	2.0	261
153	Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5346.	1.7	49
154	How can bioactive glasses be useful in ocular surgery?. Journal of Biomedical Materials Research - Part A, 2015, 103, 1259-1275.	2.1	32
155	Wollastonite-containing bioceramic coatings on alumina substrates: Design considerations and mechanical modelling. Ceramics International, 2015, 41, 11464-11470.	2.3	22
156	Ceramics for oculo-orbital surgery. Ceramics International, 2015, 41, 5213-5231.	2.3	12
157	Feasibility of glass–ceramic coatings on alumina prosthetic implants by airbrush spraying method. Ceramics International, 2015, 41, 2150-2159.	2.3	33
158	Bioceramics and Composites for Orbital Implants: Current Trends and Clinical Performance. , 2015, , 1-26.		0
159	Tailoring of Bone Scaffold Properties Using Silicate/Phosphate Glass Mixtures. Key Engineering Materials, 2014, 631, 283-288.	0.4	4
160	Novel Bone-Like Porous Glass Coatings on Al ₂ O ₃ Prosthetic Substrates. Key Engineering Materials, 2014, 631, 236-240.	0.4	7
161	Novel resorbable glass-ceramic scaffolds for hard tissue engineering: From the parent phosphate glass to its bone-like macroporous derivatives. Journal of Biomaterials Applications, 2014, 28, 1287-1303.	1.2	29
162	Biomaterials for orbital implants and ocular prostheses: Overview and future prospects. Acta Biomaterialia, 2014, 10, 1064-1087.	4.1	87

#	Article	IF	CITATIONS
163	Mechanical properties and reliability of glass–ceramic foam scaffolds for bone repair. Materials Letters, 2014, 118, 27-30.	1.3	67
164	Modelling of the strength–porosity relationship in glass-ceramic foam scaffolds for bone repair. Journal of the European Ceramic Society, 2014, 34, 2663-2673.	2.8	62
165	Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering. Journal of Biomaterials Applications, 2014, 29, 728-736.	1.2	18
166	Bioceramics in ophthalmology. Acta Biomaterialia, 2014, 10, 3372-3397.	4.1	42
167	Zirconia-containing radiopaque mesoporous bioactive glasses. Materials Letters, 2014, 130, 281-284.	1.3	38
168	Al-MCM-41 inside a glass–ceramic scaffold: A meso–macroporous system for acid catalysis. Journal of the European Ceramic Society, 2013, 33, 1535-1543.	2.8	18
169	Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. Journal of the European Ceramic Society, 2013, 33, 1553-1565.	2.8	47
170	Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications. Materials Science and Engineering C, 2013, 33, 1530-1538.	3.8	36
171	Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Journal of Biomaterials Applications, 2013, 27, 872-890.	1.2	86
172	Silver Nanocluster/Silica Composite Coatings Obtained by Sputtering for Antibacterial Applications. Engineering Materials, 2013, , 225-247.	0.3	4
173	Mesoporous Bioactive Glass as a Multifunctional System for Bone Regeneration and Controlled Drug Release. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 12-21.	0.7	42
174	Bioresorbable glass effect on the physico-chemical properties of bilayered scaffolds for osteochondral regeneration. Materials Letters, 2012, 89, 74-76.	1.3	18
175	Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. Journal of Materials Science: Materials in Medicine, 2012, 23, 2369-2380.	1.7	57
176	Bioactive glass/polymer composite scaffolds mimicking bone tissue. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2654-2667.	2.1	115
177	Evidences of glass-ceramic white opaque tesserae from Roman age: A thermo-analytical approach. Materials Letters, 2012, 74, 194-196.	1.3	4
178	Threeâ€dimensional glassâ€derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research - Part A, 2011, 97A, 514-535.	2.1	221
179	Towards an ideal biomaterial for vitreous replacement: Historical overview and future trends. Acta Biomaterialia, 2011, 7, 921-935.	4.1	101
180	Biomaterials and implants for orbital floor repair. Acta Biomaterialia, 2011, 7, 3248-3266.	4.1	134

#	Article	IF	CITATIONS
181	Resorbable Glass–Ceramic Phosphate-based Scaffolds for Bone Tissue Engineering: Synthesis, Properties, and <i>In vitro</i> Effects on Human Marrow Stromal Cells. Journal of Biomaterials Applications, 2011, 26, 465-489.	1.2	34
182	Shock Waves Induce Activity of Human Osteoblast-Like Cells in Bioactive Scaffolds. Journal of Trauma, 2010, 68, 1439-1444.	2.3	20
183	Monodisperse Mesoporous Silica Spheres Inside a Bioactive Macroporous Glass–Ceramic Scaffold. Advanced Engineering Materials, 2010, 12, B256.	1.6	15
184	Scleral buckling biomaterials and implants for retinal detachment surgery. Medical Engineering and Physics, 2010, 32, 945-956.	0.8	36
185	Composite Films of Gelatin and Hydroxyapatite/Bioactive Glass for Tissue-Engineering Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1207-1226.	1.9	41
186	The Use of Polymers in the Treatment of Retinal Detachment: Current Trends and Future Perspectives. Polymers, 2010, 2, 286-322.	2.0	18
187	Feasibility and Tailoring of Bioactive Glass-ceramic Scaffolds with Gradient of Porosity for Bone Grafting. Journal of Biomaterials Applications, 2010, 24, 693-712.	1.2	33
188	High strength bioactive glass-ceramic scaffolds for bone regeneration. Journal of Materials Science: Materials in Medicine, 2009, 20, 643-653.	1.7	107
189	Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery. Journal of Materials Science: Materials in Medicine, 2009, 20, 809-820.	1.7	46
190	Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2009, 20, 2189-2195.	1.7	40
191	Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties. Journal of Materials Science: Materials in Medicine, 2009, 20, 2197-2205.	1.7	48
192	3-D high-strength glass–ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Materials Science and Engineering C, 2009, 29, 2055-2062.	3.8	73
193	Micro-CT studies on 3-D bioactive glass–ceramic scaffolds for bone regeneration. Acta Biomaterialia, 2009, 5, 1328-1337.	4.1	79
194	Glass-Ceramic Scaffolds and Shock Waves Effect on Cells Migration. Key Engineering Materials, 2008, 361-363, 233-236.	0.4	2
195	Bioresorbable Phosphate Scaffolds for Bone Regeneration. Key Engineering Materials, 2007, 361-363, 241-244.	0.4	4
196	Collagen/Polyurethane-Coated Bioactive Glass: Early Achievements towards the Modelling of Healthy and Osteoporotic Bone. Key Engineering Materials, 0, 631, 184-189.	0.4	15
197	Antibacterial Nanocoatings for Ocular Applications. Advances in Science and Technology, 0, , .	0.2	3

Biofunctional Polymers: Vitreoretinal Surgery. , 0, , 836-856.

0