
Marie Louise Bang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 2007, 13, 613-618.	30.7	1,652
2	The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy. Cell, 2002, 111, 943-955.	28.9	712
3	The Complete Gene Sequence of Titin, Expression of an Unusual â‰^700-kDa Titin Isoform, and Its Interaction With Obscurin Identify a Novel Z-Line to I-Band Linking System. Circulation Research, 2001, 89, 1065-1072.	4.5	593
4	Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. Journal of Molecular Biology, 2001, 306, 717-726.	4.2	350
5	Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2305-2310.	7.1	304
6	The Muscle Ankyrin Repeat Proteins: CARP, ankrd2/Arpp and DARP as a Family of Titin Filament-based Stress Response Molecules. Journal of Molecular Biology, 2003, 333, 951-964.	4.2	296
7	Myopalladin, a Novel 145-Kilodalton Sarcomeric Protein with Multiple Roles in Z-Disc and I-Band Protein Assemblies. Journal of Cell Biology, 2001, 153, 413-428.	5.2	250
8	Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. Journal of Cell Biology, 2006, 173, 905-916.	5.2	195
9	Specific interaction of the potassium channel β-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. Journal of Molecular Biology, 2001, 313, 775-784.	4.2	135
10	MicroRNA-133 Modulates the l² ₁ -Adrenergic Receptor Transduction Cascade. Circulation Research, 2014, 115, 273-283.	4.5	115
11	Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Human Molecular Genetics, 2009, 18, 701-713.	2.9	88
12	Structural and regulatory roles of muscle ankyrin repeat protein family in skeletal muscle. American Journal of Physiology - Cell Physiology, 2007, 293, C218-C227.	4.6	76
13	Molecular Dissection of the Interaction of Desmin with the C-Terminal Region of Nebulin. Journal of Structural Biology, 2002, 137, 119-127.	2.8	73
14	Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties. American Journal of Physiology - Cell Physiology, 2009, 296, C1123-C1132.	4.6	63
15	Nebulin plays a direct role in promoting strong actinâ€myosin interactions. FASEB Journal, 2009, 23, 4117-4125.	0.5	61
16	MLP and CARP are linked to chronic PKCl \pm signalling in dilated cardiomyopathy. Nature Communications, 2016, 7, 12120.	12.8	58
17	The Circulating Level of FABP3 Is an Indirect Biomarker of MicroRNA-1. Journal of the American College of Cardiology, 2013, 61, 88-95.	2.8	56
18	The Muscle Ankyrin Repeat Proteins CARP, Ankrd2, and DARP Are Not Essential for Normal Cardiac Development and Function at Basal Conditions and in Response to Pressure Overload. PLoS ONE, 2014, 9, e93638.	2.5	49

MARIE LOUISE BANG

#	Article	IF	CITATIONS
19	"Zâ€eroing in on the Role of Cypher in Striated Muscle Function, Signaling, and Human Disease. Trends in Cardiovascular Medicine, 2007, 17, 258-262.	4.9	47
20	Roles of Nebulin Family Members in the Heart. Circulation Journal, 2015, 79, 2081-2087.	1.6	43
21	Peptidomimetic Targeting of Ca _v β2 Overcomes Dysregulation of the L-Type Calcium Channel Density and Recovers Cardiac Function. Circulation, 2016, 134, 534-546.	1.6	42
22	Nebulin expression in patients with nemaline myopathy. Neuromuscular Disorders, 2001, 11, 154-162.	0.6	39
23	Syncoilin is required for generating maximum isometric stress in skeletal muscle but dispensable for muscle cytoarchitecture. American Journal of Physiology - Cell Physiology, 2008, 294, C1175-C1182.	4.6	32
24	Cloning and characterization of an endo- $\hat{1}^2$ -1,3(4)glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938. Applied Microbiology and Biotechnology, 1999, 51, 215-222.	3.6	31
25	The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. Journal of Cell Science, 2013, 126, 5477-89.	2.0	31
26	Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovascular Research, 2015, 107, 216-225.	3.8	27
27	The Role of Palladin in Podocytes. Journal of the American Society of Nephrology: JASN, 2018, 29, 1662-1678.	6.1	26
28	Myopalladin promotes muscle growth through modulation of the serum response factor pathway. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 169-194.	7.3	26
29	Ankrd2 is a modulator of NF-κB-mediated inflammatory responses during muscle differentiation. Cell Death and Disease, 2014, 5, e1002-e1002.	6.3	23
30	Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. Journal of Cellular Physiology, 2017, 232, 38-52.	4.1	19
31	Lack of the C-terminal domain of nebulin in a patient with nemaline myopathy. Muscle and Nerve, 2002, 25, 747-752.	2.2	17
32	Distinct Families of Z-Line Targeting Modules in the Cooh-Terminal Region of Nebulin. Journal of Cell Biology, 2000, 150, 553-566.	5.2	16
33	Unexpectedly low mutation rates in betaâ€myosin heavy chain and cardiac myosin binding protein genes in italian patients with hypertrophic cardiomyopathy. Journal of Cellular Physiology, 2011, 226, 2894-2900.	4.1	15
34	Understanding the molecular basis of cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H181-H233.	3.2	14
35	Myopalladin knockout mice develop cardiac dilation and show a maladaptive response to mechanical pressure overload. ELife, 2021, 10, .	6.0	12
36	Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Frontiers in Physiology, 2020, 11, 616819.	2.8	11

MARIE LOUISE BANG

#	Article	IF	CITATIONS
37	In the heart of the MEF2 transcription network: novel downstream effectors as potential targets for the treatment of cardiovascular disease. Cardiovascular Research, 2018, 114, 1425-1427.	3.8	6
38	ANTAGONIZING THE CX3CR1 RECEPTOR MARKEDLY REDUCES DEVELOPMENT OF CARDIAC HYPERTROPHY AFTER TRANSVERSE AORTIC CONSTRICTION IN MICE. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, 792-801.	1.9	4
39	Deciphering the βâ€adrenergic response in human embryonic stem cellâ€derivedâ€cardiac myocytes: closer to clinical use?. British Journal of Pharmacology, 2008, 153, 625-626.	5.4	2
40	Skeletal Muscle Lacking the Extreme C-Terminal SH3 Domain of Nebulin Exhibits Heightened Vulnerability to Eccentric Contraction-Induced Injury. Biophysical Journal, 2009, 96, 213a.	0.5	1
41	The Role of Myopalladin in Skeletal Muscle. Biophysical Journal, 2014, 106, 767a.	0.5	1
42	Deciphering the β-adrenergic response in human embryonic stem cell-derived-cardiac myocytes: closer to clinical use?. British Journal of Pharmacology, 2008, 153, 1765-1765.	5.4	0
43	The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. Development (Cambridge), 2014, 141, e108-e108.	2.5	0