
Nathaly Reyes-Garcés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849233/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic drug monitoring of tranexamic acid in plasma and urine of renally impaired patients using solid phase microextraction. Talanta, 2021, 225, 121945.	2.9	13
2	Assessment of solid phase microextraction as a sample preparation tool for untargeted analysis of brain tissue using liquid chromatography-mass spectrometry. Journal of Chromatography A, 2021, 1638, 461862.	1.8	18
3	Analysis of the California list of pesticides, mycotoxins, and cannabinoids in chocolate using liquid chromatography and lowâ€pressure gas chromatographyâ€based platforms. Journal of Separation Science, 2021, 44, 2564-2576.	1.3	12
4	Serum metabolic fingerprinting of psoriasis and psoriatic arthritis patients using solid-phase microextraction—liquid chromatography—high-resolution mass spectrometry. Metabolomics, 2021, 17, 59.	1.4	19
5	Inâ€Vivo Solidâ€Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angewandte Chemie, 2020, 132, 2413-2419.	1.6	2
6	Inâ€Vivo Solidâ€Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angewandte Chemie - International Edition, 2020, 59, 2392-2398.	7.2	56
7	Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction. Molecules, 2020, 25, 3448.	1.7	16
8	Comprehensive Investigation of Metabolic Changes Occurring in the Rat Brain Hippocampus after Fluoxetine Administration Using Two Complementary In Vivo Techniques: Solid Phase Microextraction and Microdialysis. ACS Chemical Neuroscience, 2020, 11, 3749-3760.	1.7	24
9	Investigation of Early Death-Induced Changes in Rat Brain by Solid Phase Microextraction via Untargeted High Resolution Mass Spectrometry: <i>In Vivo</i> versus Postmortem Comparative Study. ACS Chemical Neuroscience, 2020, 11, 1827-1840.	1.7	19
10	In Vivo Brain Sampling Using a Microextraction Probe Reveals Metabolic Changes in Rodents after Deep Brain Stimulation. Analytical Chemistry, 2019, 91, 9875-9884.	3.2	47
11	Solid phase microextraction coupled to mass spectrometry <i>via</i> a microfluidic open interface for rapid therapeutic drug monitoring. Analyst, The, 2019, 144, 3721-3728.	1.7	28
12	Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. TrAC - Trends in Analytical Chemistry, 2019, 113, 172-181.	5.8	80
13	High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes. Scientific Reports, 2018, 8, 1167.	1.6	31
14	Tranexamic Acid Dosing for Cardiac Surgical Patients With Chronic Renal Dysfunction: A New Dosing Regimen. Anesthesia and Analgesia, 2018, 127, 1323-1332.	1.1	56
15	Advances in Solid Phase Microextraction and Perspective on Future Directions. Analytical Chemistry, 2018, 90, 302-360.	3.2	534
16	Rapid determination of immunosuppressive drug concentrations in whole blood by coated blade spray-tandem mass spectrometry (CBS-MS/MS). Analytica Chimica Acta, 2018, 999, 69-75.	2.6	49
17	The effect of hematocrit on solid-phase microextraction. Analytica Chimica Acta, 2018, 1001, 40-50.	2.6	20
18	Ultra-fast quantitation of voriconazole in human plasma by coated blade spray mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 106-111.	1.4	37

#	Article	IF	CITATIONS
19	Open Port Probe Sampling Interface for the Direct Coupling of Biocompatible Solid-Phase Microextraction to Atmospheric Pressure Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 3805-3809.	3.2	88
20	Deposition of a Sorbent into a Recession on a Solid Support To Provide a New, Mechanically Robust Solid-Phase Microextraction Device. Analytical Chemistry, 2017, 89, 8021-8026.	3.2	40
21	Rapid and Concomitant Analysis of Pharmaceuticals in Treated Wastewater by Coated Blade Spray Mass Spectrometry. Environmental Science & Technology, 2017, 51, 12566-12572.	4.6	31
22	Fast quantitation of opioid isomers in human plasma by differential mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface. Analytica Chimica Acta, 2017, 991, 89-94.	2.6	46
23	High-Throughput Screening and Quantitation of Target Compounds in Biofluids by Coated Blade Spray-Mass Spectrometry. Analytical Chemistry, 2017, 89, 8421-8428.	3.2	73
24	Quantitative analysis of biofluid spots by coated blade spray mass spectrometry, a new approach to rapid screening. Scientific Reports, 2017, 7, 16104.	1.6	73
25	Fast Quantitation of Target Analytes in Small Volumes of Complex Samples by Matrixâ€Compatible Solidâ€Phase Microextraction Devices. Angewandte Chemie - International Edition, 2016, 55, 7510-7514.	7.2	96
26	Fast Quantitation of Target Analytes in Small Volumes of Complex Samples by Matrixâ€Compatible Solidâ€Phase Microextraction Devices. Angewandte Chemie, 2016, 128, 7636-7640.	1.6	11
27	Biocompatible Solid-Phase Microextraction Nanoelectrospray Ionization: An Unexploited Tool in Bioanalysis. Analytical Chemistry, 2016, 88, 1259-1265.	3.2	117
28	Evaluation of a multiâ€fiber exchange solidâ€phase microextraction system and its application to onâ€site sampling. Journal of Separation Science, 2015, 38, 3560-3567.	1.3	17
29	A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. TrAC - Trends in Analytical Chemistry, 2015, 71, 249-264.	5.8	203
30	Solid Phase Microextraction Devices Prepared on Plastic Support as Potential Single-Use Samplers for Bioanalytical Applications. Analytical Chemistry, 2015, 87, 9722-9730.	3.2	73
31	High throughput quantification of prohibited substances in plasma using thin film solid phase microextraction. Journal of Chromatography A, 2014, 1374, 40-49.	1.8	77
32	Solid-phase microextraction in metabolomics. TrAC - Trends in Analytical Chemistry, 2014, 61, 168-180.	5.8	127
33	Coupling needle trap devices with gas chromatography–ion mobility spectrometry detection as a simple approach for on-site quantitative analysis. Journal of Chromatography A, 2013, 1300, 193-198.	1.8	35
34	Development of a new inâ€vial standard gas system for calibrating solidâ€phase microextraction in highâ€throughput and onâ€site applications. Journal of Separation Science, 2013, 36, 2939-2945.	1.3	15
35	SPME – Quo vadis?. Analytica Chimica Acta, 2012, 750, 132-151.	2.6	163