Philip Hugenholtz

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/184915/philip-hugenholtz-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66,225 108 254 427 h-index g-index citations papers 7.89 472 92,099 12.3 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
427	Characterization of the juvenile koala gut microbiome across wild populations <i>Environmental Microbiology</i> , 2022 ,	5.2	2
426	Secreted Toxins From Strains Isolated From Keratinocyte Skin Cancers Mediate Pro-tumorigenic Inflammatory Responses in the Skin <i>Frontiers in Microbiology</i> , 2021 , 12, 789042	5.7	1
425	Maternal inheritance of the koala gut microbiome and its compositional and functional maturation during juvenile development. <i>Environmental Microbiology</i> , 2021 ,	5.2	2
424	Successional dynamics and alternative stable states in a saline activated sludge microbial community over 9 years. <i>Microbiome</i> , 2021 , 9, 199	16.6	4
423	Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. <i>ISME Journal</i> , 2021 , 15, 2692-2707	11.9	6
422	Evaluation of the Microba Community Profiler for Taxonomic Profiling of Metagenomic Datasets From the Human Gut Microbiome. <i>Frontiers in Microbiology</i> , 2021 , 12, 643682	5.7	9
421	Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME Journal, 2021, 15, 1879-	1 8 93	24
420	A rooted phylogeny resolves early bacterial evolution. <i>Science</i> , 2021 , 372,	33.3	32
419	Critical evaluation of faecal microbiome preservation using metagenomic analysis. <i>ISME Communications</i> , 2021 , 1,		1
418	Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. <i>ISME Journal</i> , 2021 , 15, 2986-3004	11.9	12
417	IFN-Itherapy prevents severe gastrointestinal graft-versus-host disease. <i>Blood</i> , 2021 , 138, 722-737	2.2	12
416	Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. <i>ISME Journal</i> , 2021 , 15, 3339-3356	11.9	9
415	Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. <i>Nature Microbiology</i> , 2021 , 6, 960-970	26.6	36
414	A standardized archaeal taxonomy for the Genome Taxonomy Database. <i>Nature Microbiology</i> , 2021 , 6, 946-959	26.6	34
413	Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils. <i>Environmental Microbiology</i> , 2021 , 23, 4276-4294	5.2	1
412	Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. <i>ISME Communications</i> , 2021 , 1,		4
411	A unified catalog of 204,938 reference genomes from the human gut microbiome. <i>Nature Biotechnology</i> , 2021 , 39, 105-114	44.5	185

410	Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proceedings of the National Academy of Sciences of the United States of America, 2021 , 118,	11.5	3
409	Kinetic and Structural Characterization of the First B3 Metallo-Lactamase with an Active-Site Glutamic Acid. <i>Antimicrobial Agents and Chemotherapy</i> , 2021 , 65, e0093621	5.9	1
408	Effects of laboratory domestication on the rodent gut microbiome. ISME Communications, 2021, 1,		3
407	GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. <i>Nucleic Acids Research</i> , 2021 ,	20.1	41
406	Wastewater monitoring for SARS-CoV-2. <i>Microbiology Australia</i> , 2021 , 42, 18	0.8	1
405	species enriched in the oral cavity of patients with RA are a source of peptidoglycan-polysaccharide polymers that can induce arthritis in mice. <i>Annals of the Rheumatic Diseases</i> , 2021 , 80, 573-581	2.4	6
404	Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. <i>ISME Communications</i> , 2021 , 1,		0
403	Fluconazole resistance in Candida albicans is induced by Pseudomonas aeruginosa quorum sensing. <i>Scientific Reports</i> , 2020 , 10, 7769	4.9	18
402	Broad spectrum antibiotic-degrading metallo-Elactamases are phylogenetically diverse. <i>Protein and Cell</i> , 2020 , 11, 613-617	7.2	10
401	COVID-19 pandemic reveals the peril of ignoring metadata standards. <i>Scientific Data</i> , 2020 , 7, 188	8.2	30
400	Roadmap for naming uncultivated Archaea and Bacteria. <i>Nature Microbiology</i> , 2020 , 5, 987-994	26.6	64
399	Continuous pre- and post-transplant exposure to a disease-associated gut microbiome promotes hyper-acute graft-versus-host disease in wild-type mice. <i>Gut Microbes</i> , 2020 , 11, 754-770	8.8	10
398	A complete domain-to-species taxonomy for Bacteria and Archaea. <i>Nature Biotechnology</i> , 2020 , 38, 10	79414038	6 328
397	Proposal to reclassify the proteobacterial classes and , and the phylum into four phyla reflecting major functional capabilities. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2020 , 70, 5972-6016	2.2	205
396	Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome. <i>Science of the Total Environment</i> , 2020 , 747, 141189	10.2	7
395	Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. <i>Journal of Travel Medicine</i> , 2020 , 27,	12.9	81
394	Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. <i>Nature Communications</i> , 2020 , 11, 5886	17.4	55
393	First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. <i>Science of the Total Environment</i> , 2020 , 728, 138764	10.2	829

392	An evolving view of methane metabolism in the Archaea. <i>Nature Reviews Microbiology</i> , 2019 , 17, 219-23	322.2	181
391	Toward unrestricted use of public genomic data. <i>Science</i> , 2019 , 363, 350-352	33.3	25
390	IL-23 favours outgrowth of spondyloarthritis-associated pathobionts and suppresses host support for homeostatic microbiota. <i>Annals of the Rheumatic Diseases</i> , 2019 , 78, 494-503	2.4	26
389	Evaluation of a concatenated protein phylogeny for classification of tailed double-stranded DNA viruses belonging to the order Caudovirales. <i>Nature Microbiology</i> , 2019 , 4, 1306-1315	26.6	37
388	Functional effects of the microbiota in chronic respiratory disease. <i>Lancet Respiratory Medicine,the</i> , 2019 , 7, 907-920	35.1	133
387	Consent insufficient for data release-Response. <i>Science</i> , 2019 , 364, 446	33.3	4
386	Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. <i>Nature Microbiology</i> , 2019 , 4, 1014-1023	26.6	34
385	Evolution of photosynthesis and aerobic respiration in the cyanobacteria. <i>Free Radical Biology and Medicine</i> , 2019 , 140, 200-205	7.8	25
384	The importance of designating type material for uncultured taxa. <i>Systematic and Applied Microbiology</i> , 2019 , 42, 15-21	4.2	40
383	Defining the human gut host-phage network through single-cell viral tagging. <i>Nature Microbiology</i> , 2019 , 4, 2192-2203	26.6	57
382	Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. <i>Animal Microbiome</i> , 2019 , 1, 6	4.1	23
381	Road Map of the Phylum Campylobacterota 2019 , 1-11		5
380	GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. <i>Bioinformatics</i> , 2019 ,	7.2	636
379	Genomic Encyclopedia of Bacteria and Archaea (GEBA) VI: learning from type strains. <i>Microbiology Australia</i> , 2019 , 40, 125	0.8	2
378	2125. Staphylococcus Species Identification by Fourier Transform Infrared (FTIR) Spectroscopic Techniques: A Cross-Lab Study. <i>Open Forum Infectious Diseases</i> , 2019 , 6, S720-S720	1	78
377	Minimum Information about an Uncultivated Virus Genome (MIUViG). <i>Nature Biotechnology</i> , 2019 , 37, 29-37	44.5	180
376	A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). <i>ISME Journal</i> , 2019 , 13, 663-675	11.9	61
375	Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid. <i>Environmental Science & Environmental Scie</i>	10.3	32

374	Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57. <i>Journal of Applied Microbiology</i> , 2018 , 124, 855-86	5 € .7	14
373	Culture- and metagenomics-enabled analyses of the Methanosphaera genus reveals their monophyletic origin and differentiation according to genome size. <i>ISME Journal</i> , 2018 , 12, 2942-2953	11.9	9
372	A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. <i>Nature Biotechnology</i> , 2018 , 36, 996-1004	44.5	1369
371	Recipient mucosal-associated invariant T cells control GVHD within the colon. <i>Journal of Clinical Investigation</i> , 2018 , 128, 1919-1936	15.9	60
370	A Natural History of Actinic Keratosis and Cutaneous Squamous Cell Carcinoma Microbiomes. <i>MBio</i> , 2018 , 9,	7.8	14
369	American Gut: an Open Platform for Citizen Science Microbiome Research. MSystems, 2018, 3,	7.6	336
368	Network-guided genomic and metagenomic analysis of the faecal microbiota of the critically endangered kakapo. <i>Scientific Reports</i> , 2018 , 8, 8128	4.9	6
367	Microbiomes in respiratory health and disease: An Asia-Pacific perspective. <i>Respirology</i> , 2017 , 22, 240-2	59 .6	61
366	Acute graft-versus-host disease is regulated by an IL-17-sensitive microbiome. <i>Blood</i> , 2017 , 129, 2172-2	185	55
365	1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. <i>Nature Biotechnology</i> , 2017 , 35, 676-683	44.5	161
364	On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. <i>Science</i> , 2017 , 355, 1436-1440	33.3	182
363	Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. <i>Nature Communications</i> , 2017 , 8, 215	17.4	143
362	Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. <i>Nature Microbiology</i> , 2017 , 2, 1533-1542	26.6	764
361	Characterization of a highly efficient antibiotic-degrading metallo-Elactamase obtained from an uncultured member of a permafrost community. <i>Metallomics</i> , 2017 , 9, 1157-1168	4.5	9
360	Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. <i>Nature Biotechnology</i> , 2017 , 35, 725-731	44.5	648
359	Atmospheric trace gases support primary production in Antarctic desert surface soil. <i>Nature</i> , 2017 , 552, 400-403	50.4	159
358	Emerging pathogenic links between microbiota and the gut-lung axis. <i>Nature Reviews Microbiology</i> , 2017 , 15, 55-63	22.2	579
357	Comparative Genomic Analysis of the Class and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). <i>Frontiers in Microbiology</i> , 2017 , 8, 682	5.7	188

356	Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for digestion. <i>PeerJ</i> , 2017 , 5, e4075	3.1	16
355	A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. <i>Nature Microbiology</i> , 2017 , 2, 1344-1349	26.6	37
354	Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions. <i>Microbial Ecology</i> , 2016 , 71, 494-504	4.4	9
353	Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. <i>Scientific Reports</i> , 2016 , 6, 37389	4.9	54
352	Near complete genome sequence of the animal feed probiotic, Bacillus amyloliquefaciens H57. <i>Standards in Genomic Sciences</i> , 2016 , 11, 60		7
351	Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. <i>Nature Microbiology</i> , 2016 , 1, 16170	26.6	276
350	Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. <i>European Respiratory Journal</i> , 2016 , 47, 792-800	13.6	121
349	Genome-Based Microbial Taxonomy Coming of Age. <i>Cold Spring Harbor Perspectives in Biology</i> , 2016 , 8,	10.2	50
348	High-resolution phylogenetic microbial community profiling. ISME Journal, 2016, 10, 2020-32	11.9	161
347	Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage. <i>Molecular Biology and Evolution</i> , 2016 , 33, 915-27	8.3	50
346	Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. <i>PeerJ</i> , 2016 , 4, e2486	3.1	41
345	Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. <i>Frontiers in Microbiology</i> , 2016 , 7, 211	5.7	102
344	Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. <i>Microbiome</i> , 2016 , 4, 36	16.6	322
343	The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. <i>Environmental Microbiology</i> , 2016 , 18, 1338-51	5.2	111
342	'Candidatus Adiutrix intracellularis', an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen. <i>Environmental Microbiology</i> , 2016 , 18, 2548-64	5.2	24
341	Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. <i>GigaScience</i> , 2016 , 5, 21	7.6	131
340	Anode potential influences the structure and function of anodic electrode and electrolyte-associated microbiomes. <i>Scientific Reports</i> , 2016 , 6, 39114	4.9	44
339	A catalogue of 136 microbial draft genomes from Red Sea metagenomes. <i>Scientific Data</i> , 2016 , 3, 16005	5 6 .2	34

Link scientific publications using linked data 2015, 338 1 Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific 105 337 4.9 Reports, 2015, 5, 8678 CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and 336 9.7 3441 metagenomes. Genome Research, 2015, 25, 1043-55 A molecular survey of Australian and North American termite genera indicates that vertical 16.6 335 71 inheritance is the primary force shaping termite gut microbiomes. Microbiome, 2015, 3, 5 Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and 48 334 plant-associated and newly described type strains. Standards in Genomic Sciences, 2015, 10, 26 Blastobacter **2015**, 1-11 333 Blastomonas **2015**, 1-7 332 Anaerobaculum 2015, 1-7 331 Do you kiss your mother with that mouth? An authentic large-scale undergraduate research experience in mapping the human oral microbiome. Journal of Microbiology and Biology Education, 330 1.3 14 2015, 16, 50-60 Evaluating DNA Extraction Methods for Community Profiling of Pig Hindgut Microbial Community. 329 3.7 PLoS ONE, 2015, 10, e0142720 Draft Genome Sequences of Anaerolinea thermolimosa IMO-1, Bellilinea caldifistulae GOMI-1, Leptolinea tardivitalis YMTK-2, Levilinea saccharolytica KIBI-1, Longilinea arvoryzae KOME-1, 328 13 Previously Described as Members of the Class Anaerolineae (Chloroflexi). Genome Announcements, Comparative genomics of non-pseudomonal bacterial species colonising paediatric cystic fibrosis 3.1 18 327 patients. *PeerJ*, **2015**, 3, e1223 First genomic insights into members of a candidate bacterial phylum responsible for wastewater 326 61 3.1 bulking. PeerJ, 2015, 3, e740 Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio 325 3.1 57 chlorellavorus. PeerJ, 2015, 3, e968 A Phylogenomic Analysis of the Bacterial Phylum Fibrobacteres. Frontiers in Microbiology, 2015, 6, 1469 5.7 48 324 A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microbial 6.3 63 323 Biotechnology, 2014, 7, 142-54 STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 2014, 30, 3123-4 322 1960 7.2 Discovery of a novel methanogen prevalent in thawing permafrost. Nature Communications, 2014, 321 131 17.4 5, 3212

320	Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. <i>Nature</i> , 2014 , 513, 242-5	50.4	137
319	CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. <i>Microbiome</i> , 2014 , 2, 11	16.6	158
318	Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305(T)), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order		39
317	Planctomycetales and the family Planctomycetaceae. <i>Standards in Genomic Sciences</i> , 2014 , 9, 10 Genome sequence of the Thermotoga thermarum type strain (LA3(T)) from an African solfataric spring. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1105-17		4
316	Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279(T)), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia. <i>Standards in Genomic</i>		10
315	Sciences, 2014, 9, 1076-88 GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ, 2014, 2, e603	3.1	193
314	Yeast as a Biofertilizer Alters Plant Growth and Morphology. <i>Crop Science</i> , 2014 , 54, 785-790	2.4	18
313	An expanded genomic representation of the phylum cyanobacteria. <i>Genome Biology and Evolution</i> , 2014 , 6, 1031-45	3.9	186
312	Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. <i>PLoS Biology</i> , 2014 , 12, e1001920	9.7	146
311	Genome Sequence of Enterotoxigenic Escherichia coli Strain B2C. Genome Announcements, 2014 , 2,		5
310	Single clinical isolates from acute uncomplicated urinary tract infections are representative of dominant in situ populations. <i>MBio</i> , 2014 , 5, e01064-13	7.8	27
309	Effects of sample treatments on genome recovery via single-cell genomics. ISME Journal, 2014, 8, 2546	-9 11.9	25
308	Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. <i>ISME Journal</i> , 2014 , 8, 2015-28	11.9	224
307	Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1278-84		72
306	JTD special edition 'Hot Topics in COPD'-The microbiome in COPD. <i>Journal of Thoracic Disease</i> , 2014 , 6, 1525-31	2.6	16
305	Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. <i>Nature</i> , 2013 , 500, 567-70	50.4	750
304	Insights into the phylogeny and coding potential of microbial dark matter. <i>Nature</i> , 2013 , 499, 431-7	50.4	1484
303	Comparative genomics of two 'Candidatus Accumulibacter' clades performing biological phosphorus removal. <i>ISME Journal</i> , 2013 , 7, 2301-14	11.9	75

(2013-2013)

302	In-solution fluorescence in situ hybridization and fluorescence-activated cell sorting for single cell and population genome recovery. <i>Methods in Enzymology</i> , 2013 , 531, 3-19	1.7	16
301	Metagenomics and Community Profiling: Culture-Independent Techniques in the Clinical Laboratory. <i>Clinical Microbiology Newsletter</i> , 2013 , 35, 1-9	1.1	5
300	Longitudinal Holistic Profiling of the Lung Transplant Microbiome. <i>Journal of Heart and Lung Transplantation</i> , 2013 , 32, S10-S11	5.8	3
299	Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. <i>Nature Biotechnology</i> , 2013 , 31, 533-8	44.5	869
298	Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME Journal, 2013, 7, 50-60	011.9	147
297	From deep sequencing to viral tagging: recent advances in viral metagenomics. <i>BioEssays</i> , 2013 , 35, 436	-42	34
296	Reestablishment of recipient-associated microbiota in the lung allograft is linked to reduced risk of bronchiolitis obliterans syndrome. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 187, 640-7	10.2	89
295	Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. <i>PLoS Computational Biology</i> , 2013 , 9, e1003031	5	220
294	Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in woodand dung-feeding higher termites. <i>PLoS ONE</i> , 2013 , 8, e61126	3.7	113
293	Complete genome sequence of Coriobacterium glomerans type strain (PW2(T)) from the midgut of Pyrrhocoris apterus L. (red soldier bug). <i>Standards in Genomic Sciences</i> , 2013 , 8, 15-25		5
292	Complete genome sequence of the bile-resistant pigment-producing anaerobe Alistipes finegoldii type strain (AHN2437(T)). <i>Standards in Genomic Sciences</i> , 2013 , 8, 26-36		6
291	High-quality-draft genome sequence of the yellow-pigmented flavobacterium Joostella marina type strain (En5(T)). <i>Standards in Genomic Sciences</i> , 2013 , 8, 37-46		4
290	Complete genome sequence of the moderate thermophile Anaerobaculum mobile type strain (NGA(T)). <i>Standards in Genomic Sciences</i> , 2013 , 8, 47-57		10
289	Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (H(T)), and emendation of the species Turneriella parva. <i>Standards in Genomic Sciences</i> , 2013 , 8, 228-38		8
288	Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701(T)) and emended description of the genus Thermanaerovibrio. <i>Standards in Genomic Sciences</i> , 2013 , 9, 57-70		4
287	Genome sequence of Frateuria aurantia type strain (Kondl67(T)), a xanthomonade isolated from Lilium auratium Lindl. <i>Standards in Genomic Sciences</i> , 2013 , 9, 83-92		1
286	Prokaryotic Super Program Advisory Committee DOE Joint Genome Institute, Walnut Creek, CA, March 27, 2013. <i>Standards in Genomic Sciences</i> , 2013 , 8, 561-70		5
285	Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1(T)), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta		24

Standards in Genomic Sciences, 2013, 8, 88-105

284	Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692(T)) from the alkaline Lake Magadi in the East African Rift. <i>Standards in Genomic Sciences</i> , 2013 , 8, 165-76		2
283	Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055(T)). <i>Standards in Genomic Sciences</i> , 2013 , 8, 177-87		4
282	Contrasting Life Strategies of Viruses That Infect Photo- and Heterotrophic Bacteria, as Revealed by Viral Tagging. <i>MBio</i> , 2013 , 4,	7.8	3
281	Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. <i>PLoS ONE</i> , 2013 , 8, e68465	3.7	51
2 80	Dielectrophoresis-based discrimination of bacteria at the strain level based on their surface properties. <i>PLoS ONE</i> , 2013 , 8, e76751	3.7	37
279	Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. <i>ISME Journal</i> , 2012 , 6, 531-41	11.9	118
278	68 Distinct Microbial Signatures of Healthy and Failing Lung Allografts. <i>Journal of Heart and Lung Transplantation</i> , 2012 , 31, S32	5.8	2
277	Defining the core Arabidopsis thaliana root microbiome. <i>Nature</i> , 2012 , 488, 86-90	50.4	1613
276	An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. <i>ISME Journal</i> , 2012 , 6, 610-8	11.9	3287
275	Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. <i>PLoS ONE</i> , 2012 , 7, e34605	3.7	104
274	Fast, accurate error-correction of amplicon pyrosequences using Acacia. <i>Nature Methods</i> , 2012 , 9, 425-6	21.6	268
273	Unlocking the potential of metagenomics through replicated experimental design. <i>Nature Biotechnology</i> , 2012 , 30, 513-20	44.5	212
272	Grinder: a versatile amplicon and shotgun sequence simulator. <i>Nucleic Acids Research</i> , 2012 , 40, e94	20.1	137
271	Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. <i>MBio</i> , 2012 , 3,	7.8	72
270	Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. <i>ISME Journal</i> , 2012 , 6, 94-103	11.9	385
269	Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 230-9		21
268	Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 120-30		11
267	Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)). Standards in Genomic Sciences, 2012, 6, 1-13		20

(2011-2012)

266	Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1(T)), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. <i>Standards in Genomic</i>		46
265	Sciences, 2012, 6, 194-209 Permanent draft genome sequence of the gliding predator Saprospira grandis strain Sa g1 (= HR1). Standards in Genomic Sciences, 2012, 6, 210-9		1
264	Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 185-93		8
263	Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1(T)) from a deep-sea hydrothermal vent chimney. <i>Standards in Genomic Sciences</i> , 2012 , 6, 21-30		6
262	Complete genome sequence of the aquatic bacterium Runella slithyformis type strain (LSU 4(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 145-54		16
261	Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 155-64		9
260	Genome sequence of the homoacetogenic bacterium Holophaga foetida type strain (TMBS4(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 174-84		23
259	Complete genome sequence of the orange-red pigmented, radioresistant Deinococcus proteolyticus type strain (MRP(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 240-50		7
258	Genome sequence of the flexirubin-pigmented soil bacterium Niabella soli type strain (JS13-8(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 210-20		0
257	Genome sequence of the Antarctic rhodopsins-containing flavobacterium Gillisia limnaea type strain (R-8282(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 107-19		9
256	Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph Sulfuricurvum kujiense type strain (YK-1(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 94-103		31
255	The Enduring Legacy of Small Subunit rRNA in Microbiology 2011 , 123-128		1
254	Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. <i>Green Chemistry</i> , 2011 , 13, 2083	0	93
253	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. <i>Nature Biotechnology</i> , 2011 , 29, 415-20	4.5	445
252	Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. <i>Science</i> , 2011 , 333, 646-8	3.3	119
251	Characterization of trapped lignin-degrading microbes in tropical forest soil. <i>PLoS ONE</i> , 2011 , 6, e19306	i-7	143
250	Complete genome sequence of Leadbetterella byssophila type strain (4M15). <i>Standards in Genomic Sciences</i> , 2011 , 4, 2-12		15
249	Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6). <i>Standards in Genomic Sciences</i> , 2011 , 4, 131-43		8

248	Complete genome sequence of Paludibacter propionicigenes type strain (WB4). <i>Standards in Genomic Sciences</i> , 2011 , 4, 36-44	24
247	Complete genome sequence of Bacteroides helcogenes type strain (P 36-108). <i>Standards in Genomic Sciences</i> , 2011 , 4, 45-53	7
246	Complete genome sequence of Weeksella virosa type strain (9751). <i>Standards in Genomic Sciences</i> , 2011 , 4, 81-90	8
245	Complete genome sequence of Desulfobulbus propionicus type strain (1pr3). <i>Standards in Genomic Sciences</i> , 2011 , 4, 100-10	39
244	Complete genome sequence of Marivirga tractuosa type strain (H-43). <i>Standards in Genomic Sciences</i> , 2011 , 4, 154-62	15
243	Complete genome sequence of Desulfurococcus mucosus type strain (O7/1). <i>Standards in Genomic Sciences</i> , 2011 , 4, 173-82	9
242	Complete genome sequence of Cellulophaga lytica type strain (LIM-21). <i>Standards in Genomic Sciences</i> , 2011 , 4, 221-32	23
241	Non-contiguous finished genome sequence of Bacteroides coprosuis type strain (PC139). <i>Standards in Genomic Sciences</i> , 2011 , 4, 233-43	4
240	Complete genome sequence of the extremely halophilic Halanaerobium praevalens type strain (GSL). <i>Standards in Genomic Sciences</i> , 2011 , 4, 312-21	24
239	Complete genome sequence of Nitratifractor salsuginis type strain (E9I37-1). <i>Standards in Genomic Sciences</i> , 2011 , 4, 322-30	10
238	Complete genome sequence of Mahella australiensis type strain (50-1 BON). <i>Standards in Genomic Sciences</i> , 2011 , 4, 331-41	6
237	Complete genome sequence of Treponema succinifaciens type strain (6091). <i>Standards in Genomic Sciences</i> , 2011 , 4, 361-70	20
236	Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT). <i>Standards in Genomic Sciences</i> , 2011 , 4, 371-380	9
235	Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1A). <i>Standards in Genomic Sciences</i> , 2011 , 4, 381-92	10
234	Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2). <i>Standards in Genomic Sciences</i> , 2011 , 4, 393-401	19
233	Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. <i>Standards in Genomic</i>	35
232	Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113). Standards in Genomic Sciences, 2011 , 5, 30-40	11
231	Non-contiguous finished genome sequence of the opportunistic oral pathogen Prevotella multisaccharivorax type strain (PPPA20). Standards in Genomic Sciences, 2011 , 5, 41-9	2

230	Genome sequence of the filamentous, gliding Thiothrix nivea neotype strain (JP2(T)). <i>Standards in Genomic Sciences</i> , 2011 , 5, 398-406		9
229	Complete genome sequence of the thermophilic sulfur-reducer Desulfurobacterium thermolithotrophum type strain (BSA(T)) from a deep-sea hydrothermal vent. <i>Standards in Genomic Sciences</i> , 2011 , 5, 407-15		10
228	Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1). <i>Standards in Genomic Sciences</i> , 2011 , 4, 54-62		9
227	Complete genome sequence of Truepera radiovictrix type strain (RQ-24). <i>Standards in Genomic Sciences</i> , 2011 , 4, 91-9		37
226	Complete genome sequence of Bacteroides salanitronis type strain (BL78). <i>Standards in Genomic Sciences</i> , 2011 , 4, 191-9		8
225	Complete genome sequence of Odoribacter splanchnicus type strain (1651/6). <i>Standards in Genomic Sciences</i> , 2011 , 4, 200-9		62
224	Complete genome sequence of Oceanithermus profundus type strain (506). <i>Standards in Genomic Sciences</i> , 2011 , 4, 210-20		3
223	Complete genome sequence of Tsukamurella paurometabola type strain (no. 33). <i>Standards in Genomic Sciences</i> , 2011 , 4, 342-51		8
222	Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). <i>Standards in Genomic Sciences</i> , 2011 , 5, 97-111		72
221	Complete genome sequence of Isosphaera pallida type strain (IS1B). <i>Standards in Genomic Sciences</i> , 2011 , 4, 63-71		40
220	Complete genome sequence of Cellulophaga algicola type strain (IC166). <i>Standards in Genomic Sciences</i> , 2011 , 4, 72-80		22
219	Complete genome sequence of Riemerella anatipestifer type strain (ATCC 11845T). <i>Standards in Genomic Sciences</i> , 2011 , 4, 144-153		26
218	Complete genome sequence of the thermophilic sulfur-reducer Hippea maritima type strain (MH(2)). <i>Standards in Genomic Sciences</i> , 2011 , 4, 303-11		6
217	Complete genome sequence of Haliscomenobacter hydrossis type strain (O). <i>Standards in Genomic Sciences</i> , 2011 , 4, 352-60		17
216	Complete genome sequence of the gliding freshwater bacterium Fluviicola taffensis type strain (RW262). <i>Standards in Genomic Sciences</i> , 2011 , 5, 21-9		19
215	Genome sequence of the moderately thermophilic halophile Flexistipes sinusarabici strain (MAS10). <i>Standards in Genomic Sciences</i> , 2011 , 5, 86-96		8
214	Complete genome sequence of Deinococcus maricopensis type strain (LB-34). <i>Standards in Genomic Sciences</i> , 2011 , 4, 163-72		11
213	Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. <i>ISME Journal</i> , 2011 , 5, 122-30	11.9	99

212	Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. <i>ISME Journal</i> , 2011 , 5, 161-4	11.9	54
211	Bioenergy feedstock-specific enrichment of microbial populations during high-solids thermophilic deconstruction. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 2088-98	4.9	20
210	Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5804-12	4.8	91
209	Complete genome sequence of Thermomonospora curvata type strain (B9). <i>Standards in Genomic Sciences</i> , 2011 , 4, 13-22		24
208	Phage encoded H-NS: a potential achilles heel in the bacterial defence system. <i>PLoS ONE</i> , 2011 , 6, e200)9 5 .7	41
207	Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyR). <i>Standards in Genomic Sciences</i> , 2011 , 4, 371-80		3
206	Complete genome sequence of Riemerella anatipestifer type strain (ATCC 11845). <i>Standards in Genomic Sciences</i> , 2011 , 4, 144-53		16
205	Experimental factors affecting PCR-based estimates of microbial species richness and evenness. <i>ISME Journal</i> , 2010 , 4, 642-7	11.9	438
204	Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. <i>ISME Journal</i> , 2010 , 4, 1352-6	11.9	60
203	Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. <i>Nature Methods</i> , 2010 , 7, 807-12	21.6	161
202	Multiple displacement amplification compromises quantitative analysis of metagenomes. <i>Nature Methods</i> , 2010 , 7, 943-4	21.6	142
201	Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. <i>Environmental Microbiology</i> , 2010 , 12, 118-23	5.2	1000
200	Metatranscriptomic array analysis of 'Candidatus Accumulibacter phosphatis'-enriched enhanced biological phosphorus removal sludge. <i>Environmental Microbiology</i> , 2010 , 12, 1205-17	5.2	67
199	A call for standardized classification of metagenome projects. <i>Environmental Microbiology</i> , 2010 , 12, 1803-5	5.2	23
198	The genome sequence of Methanohalophilus mahii SLP(T) reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments. <i>Archaea</i> , 2010 , 2010, 690737	2	31
197	Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 14793-8	11.5	163
196	Complete genome sequence of Cellulomonas flavigena type strain (134). <i>Standards in Genomic Sciences</i> , 2010 , 3, 15-25		31
195	Evolutionary relationships of wild hominids recapitulated by gut microbial communities. <i>PLoS Biology</i> , 2010 , 8, e1000546	9.7	364

(2010-2010)

194	The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. <i>Nucleic Acids Research</i> , 2010 , 38, D346-54	20.1	331
193	Complete genome sequence of Planctomyces limnophilus type strain (Ml290). <i>Standards in Genomic Sciences</i> , 2010 , 3, 47-56		28
192	Permanent draft genome sequence of Dethiosulfovibrio peptidovorans type strain (SEBR 4207). <i>Standards in Genomic Sciences</i> , 2010 , 3, 85-92		8
191	Complete genome sequence of Ferrimonas balearica type strain (PAT). <i>Standards in Genomic Sciences</i> , 2010 , 3, 174-82		9
190	Non-contiguous finished genome sequence of Aminomonas paucivorans type strain (GLU-3). <i>Standards in Genomic Sciences</i> , 2010 , 3, 285-93		8
189	Complete genome sequence of Ilyobacter polytropus type strain (CuHbu1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 304-14		7
188	Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509). <i>Standards in Genomic Sciences</i> , 2010 , 3, 325-36		27
187	Complete genome sequence of Veillonella parvula type strain (Te3). <i>Standards in Genomic Sciences</i> , 2010 , 2, 57-65		29
186	Complete genome sequence of Kribbella flavida type strain (IFO 14399). <i>Standards in Genomic Sciences</i> , 2010 , 2, 186-93		10
185	Complete genome sequence of Conexibacter woesei type strain (ID131577). <i>Standards in Genomic Sciences</i> , 2010 , 2, 212-9		15
184	Complete genome sequence of Thermocrinis albus type strain (HI 11/12). <i>Standards in Genomic Sciences</i> , 2010 , 2, 194-202		14
183	Complete genome sequence of Meiothermus silvanus type strain (VI-R2). <i>Standards in Genomic Sciences</i> , 2010 , 3, 37-46		16
182	Complete genome sequence of Olsenella uli type strain (VPI D76D-27C). <i>Standards in Genomic Sciences</i> , 2010 , 3, 76-84		27
181	Complete genome sequence of Acidaminococcus fermentans type strain (VR4). <i>Standards in Genomic Sciences</i> , 2010 , 3, 1-14		19
180	Complete genome sequence of Meiothermus ruber type strain (21). <i>Standards in Genomic Sciences</i> , 2010 , 3, 26-36		28
179	Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288). <i>Standards in Genomic Sciences</i> , 2010 , 3, 57-65		16
178	Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 66-75		13
177	Complete genome sequence of Vulcanisaeta distributa type strain (IC-017). Standards in Genomic Sciences, 2010 , 3, 117-25		8

176	Complete genome sequence of Arcanobacterium haemolyticum type strain (11018). <i>Standards in Genomic Sciences</i> , 2010 , 3, 126-35	7
175	Complete genome sequence of Thermosediminibacter oceani type strain (JW/IW-1228P). <i>Standards in Genomic Sciences</i> , 2010 , 3, 108-16	10
174	Complete genome sequence of Spirochaeta smaragdinae type strain (SEBR 4228). <i>Standards in Genomic Sciences</i> , 2010 , 3, 136-44	15
173	Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 153-62	9
172	Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 268-75	10
171	Complete genome sequence of Desulfarculus baarsii type strain (2st14). <i>Standards in Genomic Sciences</i> , 2010 , 3, 276-84	27
170	Complete genome sequence of Intrasporangium calvum type strain (7 KIP). <i>Standards in Genomic Sciences</i> , 2010 , 3, 294-303	4
169	Complete genome sequence of Methanothermus fervidus type strain (V24S). <i>Standards in Genomic Sciences</i> , 2010 , 3, 315-24	14
168	Complete genome sequence of Thermaerobacter marianensis type strain (7p75a). <i>Standards in Genomic Sciences</i> , 2010 , 3, 337-45	7
167	Complete genome sequence of Xylanimonas cellulosilytica type strain (XIL07). <i>Standards in Genomic Sciences</i> , 2010 , 2, 1-8	8
166	Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IA). <i>Standards in Genomic Sciences</i> , 2010 , 2, 9-18	20
165	Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022). <i>Standards in Genomic Sciences</i> , 2010 , 2, 49-56	20
164	Complete genome sequence of Streptosporangium roseum type strain (NI 9100). <i>Standards in Genomic Sciences</i> , 2010 , 2, 29-37	25
163	Complete genome sequence of Chitinophaga pinensis type strain (UQM 2034). <i>Standards in Genomic Sciences</i> , 2010 , 2, 87-95	57
162	Complete genome sequence of Sulfurospirillum deleyianum type strain (5175). <i>Standards in Genomic Sciences</i> , 2010 , 2, 149-57	24
161	Complete genome sequence of Haloterrigena turkmenica type strain (4k). <i>Standards in Genomic Sciences</i> , 2010 , 2, 107-16	28
160	Complete genome sequence of Haliangium ochraceum type strain (SMP-2). <i>Standards in Genomic Sciences</i> , 2010 , 2, 96-106	53
159	Complete genome sequence of Geodermatophilus obscurus type strain (G-20). Standards in Genomic Sciences, 2010 , 2, 158-67	49

(2010-2010)

158	Complete genome sequence of Nakamurella multipartita type strain (Y-104). <i>Standards in Genomic Sciences</i> , 2010 , 2, 168-75	28
157	Complete genome sequence of Spirosoma linguale type strain (1). Standards in Genomic Sciences, 2010 , 2, 176-85	35
156	Complete genome sequence of Segniliparus rotundus type strain (CDC 1076). <i>Standards in Genomic Sciences</i> , 2010 , 2, 203-11	9
155	Complete genome sequence of Sebaldella termitidis type strain (NCTC 11300). <i>Standards in Genomic Sciences</i> , 2010 , 2, 220-7	16
154	Complete genome sequence of Thermosphaera aggregans type strain (M11TL). <i>Standards in Genomic Sciences</i> , 2010 , 2, 245-59	12
153	Complete genome sequence of Brachyspira murdochii type strain (56-150). <i>Standards in Genomic Sciences</i> , 2010 , 2, 260-9	18
152	Complete genome sequence of Aminobacterium colombiense type strain (ALA-1). <i>Standards in Genomic Sciences</i> , 2010 , 2, 280-9	27
151	Complete genome sequence of Arcobacter nitrofigilis type strain (CI). <i>Standards in Genomic Sciences</i> , 2010 , 2, 300-8	32
150	Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24). <i>Standards in Genomic Sciences</i> , 2010 , 2, 290-9	18
149	Complete genome sequence of Thermobispora bispora type strain (R51). <i>Standards in Genomic Sciences</i> , 2010 , 2, 318-26	18
148	Complete genome sequence of Desulfohalobium retbaense type strain (HR(100)). <i>Standards in Genomic Sciences</i> , 2010 , 2, 38-48	17
147	Complete genome sequence of Archaeoglobus profundus type strain (AV18). <i>Standards in Genomic Sciences</i> , 2010 , 2, 327-46	20
146	Complete genome sequence of Denitrovibrio acetiphilus type strain (N2460). <i>Standards in Genomic Sciences</i> , 2010 , 2, 270-9	11
145	Three-Dimensional Analysis of Microbial Communities. <i>Microscopy and Microanalysis</i> , 2010 , 16, 388-389 0.5	
144	Complete genome sequence of Gordonia bronchialis type strain (3410). <i>Standards in Genomic Sciences</i> , 2010 , 2, 19-28	19
143	Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities. <i>Bioenergy Research</i> , 2010 , 3, 146-158	82
142	Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. <i>PLoS ONE</i> , 2010 , 5, e8812	154
141	Complete genome sequence of Sulfurimonas autotrophica type strain (OK10). <i>Standards in Genomic Sciences</i> , 2010 , 3, 194-202	32

140	Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847). <i>Standards in Genomic Sciences</i> , 2010 , 3, 203-11		12
139	Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. <i>PLoS ONE</i> , 2009 , 4, e4192	3.7	54
138	Genomic analysis of "Elusimicrobium minutum," the first cultivated representative of the phylum "Elusimicrobia" (formerly termite group 1). <i>Applied and Environmental Microbiology</i> , 2009 , 75, 2841-9	4.8	75
137	Single Cell Whole Genome Amplification of Uncultivated Organisms. <i>Microbiology Monographs</i> , 2009 , 241-256	0.8	2
136	Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845). <i>Standards in Genomic Sciences</i> , 2009 , 1, 101-9		12
135	ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes. <i>Bioinformatics</i> , 2009 , 25, 2737-8	7.2	114
134	A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. <i>Nature</i> , 2009 , 462, 1056-60	50.4	803
133	Getting to the core of the gut microbiome. <i>Nature Biotechnology</i> , 2009 , 27, 344-6	44.5	37
132	Focus: Synergistetes. <i>Environmental Microbiology</i> , 2009 , 11, 1327-9	5.2	55
131	Genomics. Genome project standards in a new era of sequencing. <i>Science</i> , 2009 , 326, 236-7	33.3	326
130	Correlative TEM and FISH Imaging of Microbial Communities. <i>Microscopy and Microanalysis</i> , 2009 , 15, 834-835	0.5	
129	Complete genome sequence of Halorhabdus utahensis type strain (AX-2). <i>Standards in Genomic Sciences</i> , 2009 , 1, 218-25		21
128	Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122). <i>Standards in Genomic Sciences</i> , 2009 , 1, 21-8		11
127	Complete genome sequence of Cryptobacterium curtum type strain (12-3). <i>Standards in Genomic Sciences</i> , 2009 , 1, 93-100		13
126	Complete genome sequence of Desulfomicrobium baculatum type strain (X). <i>Standards in Genomic Sciences</i> , 2009 , 1, 29-37		30
125	Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP). Standards in Genomic Sciences, 2009 , 1, 38-45		27
124	Complete genome sequence of Sanguibacter keddieii type strain (ST-74). <i>Standards in Genomic Sciences</i> , 2009 , 1, 110-8		10
123	Complete genome sequence of Catenulispora acidiphila type strain (ID 139908). <i>Standards in Genomic Sciences</i> , 2009 , 1, 119-25		19

(2009-2009)

122	Complete genome sequence of Leptotrichia buccalis type strain (C-1013-b). <i>Standards in Genomic Sciences</i> , 2009 , 1, 126-32	17
121	Complete genome sequence of Saccharomonospora viridis type strain (P101). <i>Standards in Genomic Sciences</i> , 2009 , 1, 141-9	21
120	Complete genome sequence of Actinosynnema mirum type strain (101). <i>Standards in Genomic Sciences</i> , 2009 , 1, 46-53	32
119	Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3). <i>Standards in Genomic Sciences</i> , 2009 , 1, 54-62	19
118	Complete genome sequence of Halogeometricum borinquense type strain (PR3). <i>Standards in Genomic Sciences</i> , 2009 , 1, 150-9	22
117	Complete genome sequence of Anaerococcus prevotii type strain (PC1). <i>Standards in Genomic Sciences</i> , 2009 , 1, 159-65	18
116	Complete genome sequence of Atopobium parvulum type strain (IPP 1246). <i>Standards in Genomic Sciences</i> , 2009 , 1, 166-73	21
115	Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255). <i>Standards in Genomic Sciences</i> , 2009 , 1, 174-82	31
114	Complete genome sequence of Kangiella koreensis type strain (SW-125). <i>Standards in Genomic Sciences</i> , 2009 , 1, 226-33	10
113	Complete genome sequence of Jonesia denitrificans type strain (Prevot 55134). <i>Standards in Genomic Sciences</i> , 2009 , 1, 262-9	10
112	Complete genome sequence of Halomicrobium mukohataei type strain (arg-2). <i>Standards in Genomic Sciences</i> , 2009 , 1, 270-7	30
111	Complete genome sequence of Rhodothermus marinus type strain (R-10). <i>Standards in Genomic Sciences</i> , 2009 , 1, 283-90	20
110	Complete genome sequence of Streptobacillus moniliformis type strain (9901). <i>Standards in Genomic Sciences</i> , 2009 , 1, 300-7	16
109	Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10). <i>Standards in Genomic Sciences</i> , 2009 , 1, 3-11	19
108	Complete genome sequence of Pirellula staleyi type strain (ATCC 27377). <i>Standards in Genomic Sciences</i> , 2009 , 1, 308-16	26
107	Complete genome sequence of Kytococcus sedentarius type strain (541). <i>Standards in Genomic Sciences</i> , 2009 , 1, 12-20	94
106	Complete genome sequence of Dyadobacter fermentans type strain (NS114). <i>Standards in Genomic Sciences</i> , 2009 , 1, 133-40	19
105	Complete genome sequence of Thermanaerovibrio acidaminovorans type strain (Su883). <i>Standards in Genomic Sciences</i> , 2009 , 1, 254-61	19

104	Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1). <i>Standards in Genomic Sciences</i> , 2009 , 1, 234-41		16
103	Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575). <i>Standards in Genomic Sciences</i> , 2009 , 1, 242-53		33
102	Complete genome sequence of Stackebrandtia nassauensis type strain (LLR-40K-21). <i>Standards in Genomic Sciences</i> , 2009 , 1, 234-41		16
101	Single Cell Whole Genome Amplification of Uncultivated Organisms. <i>Microbiology Monographs</i> , 2009 , 83-99	0.8	2
100	A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. <i>ISME Journal</i> , 2008 , 2, 1146-56	11.9	266
99	The minimum information about a genome sequence (MIGS) specification. <i>Nature Biotechnology</i> , 2008 , 26, 541-7	44.5	964
98	CRISPRa widespread system that provides acquired resistance against phages in bacteria and archaea. <i>Nature Reviews Microbiology</i> , 2008 , 6, 181-6	22.2	630
97	Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal. <i>Environmental Microbiology</i> , 2008 , 10, 2692-703	5.2	87
96	Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. <i>Molecular Systems Biology</i> , 2008 , 4, 198	12.2	118
95	A bioinformatician's guide to metagenomics. <i>Microbiology and Molecular Biology Reviews</i> , 2008 , 72, 557-78, Table of Contents	13.2	292
94	A renaissance for the pioneering 16S rRNA gene. Current Opinion in Microbiology, 2008, 11, 442-6	7.9	337
93	A bacterial metapopulation adapts locally to phage predation despite global dispersal. <i>Genome Research</i> , 2008 , 18, 293-7	9.7	119
92	A korarchaeal genome reveals insights into the evolution of the Archaea. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 8102-7	11.5	214
91	Annotation of metagenome short reads using proxygenes. <i>Bioinformatics</i> , 2008 , 24, i7-13	7.2	35
90	Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. <i>Journal of Molecular Evolution</i> , 2008 , 67, 13-22	3.1	50
89	IMG/M: a data management and analysis system for metagenomes. <i>Nucleic Acids Research</i> , 2008 , 36, D534-8	20.1	268
88	Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. <i>Journal of Clinical Microbiology</i> , 2007 , 45, 1954-62	9.7	143
87	Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 11889-94	11.5	464

86	Building on basic metagenomics with complementary technologies. <i>Genome Biology</i> , 2007 , 8, 231	18.3	44
85	Integrating ecology into biotechnology. Current Opinion in Biotechnology, 2007, 18, 287-92	11.4	51
84	Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. <i>Nature Methods</i> , 2007 , 4, 495-500	21.6	257
83	Accurate phylogenetic classification of variable-length DNA fragments. <i>Nature Methods</i> , 2007 , 4, 63-72	21.6	435
82	Characterization of filamentous bacteria, belonging to candidate phylum KSB3, that are associated with bulking in methanogenic granular sludges. <i>ISME Journal</i> , 2007 , 1, 246-55	11.9	33
81	Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. <i>Nature</i> , 2007 , 450, 560-5	50.4	990
80	Riding giants. Environmental Microbiology, 2007 , 9, 5	5.2	4
79	CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. <i>BMC Bioinformatics</i> , 2007 , 8, 209	3.6	482
78	Automated group assignment in large phylogenetic trees using GRUNT: GRouping, Ungrouping, Naming Tool. <i>BMC Bioinformatics</i> , 2007 , 8, 402	3.6	9
77	Quantitative phylogenetic assessment of microbial communities in diverse environments. <i>Science</i> , 2007 , 315, 1126-30	33.3	259
76	Increasing focus on environmental biotechnology in the face of pressing environmental challenges. <i>Current Opinion in Biotechnology</i> , 2007 , 18, 235-236	11.4	
75	PHOSPHORUS ACCUMULATING ORGANISMS REVEAL THEIR SECRETS: A GENOME LEVEL UNDERSTANDING OF ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL. <i>Proceedings of the Water Environment Federation</i> , 2007 , 2007, 4920-4932		
74	Evolutionary conservation of sequence and secondary structures in CRISPR repeats. <i>Genome Biology</i> , 2007 , 8, R61	18.3	331
73	An experimental metagenome data management and analysis system. <i>Bioinformatics</i> , 2006 , 22, e359-67	7.2	72
72	The integrated microbial genomes (IMG) system. <i>Nucleic Acids Research</i> , 2006 , 34, D344-8	20.1	306
71	The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. <i>Nucleic Acids Research</i> , 2006 , 34, D332-4	20.1	187
70	NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. <i>Nucleic Acids Research</i> , 2006 , 34, W394-9	20.1	810
69	Lineages of acidophilic archaea revealed by community genomic analysis. <i>Science</i> , 2006 , 314, 1933-5	33.3	190

68	Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5069-72	4.8	7556
67	Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). <i>Environmental Microbiology</i> , 2006 , 8, 871-84	5.2	126
66	Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. <i>Nature Biotechnology</i> , 2006 , 24, 1263-9	44.5	541
65	Non-sulfate-reducing, syntrophic bacteria affiliated with desulfotomaculum cluster I are widely distributed in methanogenic environments. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 2080-91	4.8	147
64	Comparative metagenomics of microbial communities. <i>Science</i> , 2005 , 308, 554-7	33.3	1211
63	SNP-VISTA: an interactive SNP visualization tool. <i>BMC Bioinformatics</i> , 2005 , 6, 292	3.6	16
62	Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 6319-24	4.8	195
61	Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2004 , 54, 204	2.2 9-2051	105
60	Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4363-6	4.8	112
59	Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 588-96	4.8	192
58	Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. <i>Bioinformatics</i> , 2004 , 20, 2317-9	7.2	1339
57	Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5875-81	4.8	116
56	Community structure and metabolism through reconstruction of microbial genomes from the environment. <i>Nature</i> , 2004 , 428, 37-43	50.4	1710
55	Laboratory cultivation of widespread and previously uncultured soil bacteria. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 7210-5	4.8	391
54	Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2003 , 53, 1155-1163	2.2	314
53	Fermentation of glycolate by a pure culture of a strictly anaerobic gram-positive bacterium belonging to the family Lachnospiraceae. <i>Archives of Microbiology</i> , 2003 , 179, 321-8	3	12
52	PCR detection of Clostridium chauvoei in pure cultures and in formalin-fixed, paraffin-embedded tissues. <i>Veterinary Microbiology</i> , 2003 , 91, 239-48	3.3	19
51	Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2003 , 53, 289-293	2.2	188

(1998-2003)

50	Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5512-8	4.8	73
49	Kinetic and phylogenetic characterization of an anaerobic dechlorinating microbial community. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 459-469	2.9	37
48	The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. <i>Water Science and Technology</i> , 2002 , 46, 267-272	2.2	18
47	Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. <i>Molecular Microbiology</i> , 2002 , 44, 1575-87	4.1	104
46	In situ studies of the phylogeny and physiology of filamentous bacteria with attached growth. <i>Environmental Microbiology</i> , 2002 , 4, 383-91	5.2	46
45	Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. <i>Environmental Microbiology</i> , 2002 , 4, 654-66	5.2	345
44	The DMSO Reductase Family of Microbial Molybdenum Enzymes; Molecular Properties and Role in the Dissimilatory Reduction of Toxic Elements. <i>Geomicrobiology Journal</i> , 2002 , 19, 3-21	2.5	96
43	Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 2309-2318	2.9	214
42	Exploring prokaryotic diversity in the genomic era. <i>Genome Biology</i> , 2002 , 3, REVIEWS0003	18.3	520
41	Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. <i>Methods in Molecular Biology</i> , 2002 , 179, 29-42	1.4	90
40	The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. <i>Water Science and Technology</i> , 2002 , 46, 267-72	2.2	6
39	Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 411-9	4.8	269
38	Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. <i>Journal of Bacteriology</i> , 2001 , 183, 6028-35	3.5	280
37	A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2001 , 51, 385-391	2.2	42
36	Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1175-82	4.8	626
35	Microorganisms should be high on DNA preservation list. <i>Science</i> , 2000 , 290, 1503	33.3	10
34	Diversity of radA genes from cultured and uncultured archaea: comparative analysis of putative RadA proteins and their use as a phylogenetic marker. <i>Journal of Bacteriology</i> , 1999 , 181, 907-15	3.5	46
33	The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. <i>Water Science and Technology</i> , 1998 , 37, 451	2.2	19

32	New foam-forming nocardioforms found in activated sludge. <i>Water Science and Technology</i> , 1998 , 37, 495	2.2	4
31	Novel division level bacterial diversity in a Yellowstone hot spring. <i>Journal of Bacteriology</i> , 1998 , 180, 366-76	3.5	754
30	The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. <i>Water Science and Technology</i> , 1998 , 37, 451-454	2.2	37
29	Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. <i>Journal of Bacteriology</i> , 1998 , 180, 4765-74	3.5	1908
28	Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 3869-77	4.8	634
27	The characterization and description of representatives of 'G' bacteria from activated sludge plants. <i>Letters in Applied Microbiology</i> , 1997 , 25, 63-9	2.9	22
26	The filamentous morphotype Eikelboom type 1863 is not a single genetic entity. <i>Journal of Applied Microbiology</i> , 1997 , 82, 411-21	4.7	33
25	Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. <i>Applied and Environmental Microbiology</i> , 1997 , 63, 254-62	4.8	74
24	Towards understanding the taxonomy of some of the filamentous bacteria causing bulking and foaming in activated sludge plants. <i>Water Science and Technology</i> , 1996 , 34, 137	2.2	7
23	Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. <i>Trends in Biotechnology</i> , 1996 , 14, 190-7	15.1	251
22	16S rRNA Analysis of Isolates Obtained from Gram-Negative, Filamentous Bacteria Micromanipulated from Activated Sludge. <i>Systematic and Applied Microbiology</i> , 1996 , 19, 334-343	4.2	52
21	Towards understanding the taxonomy of some of the filamentous bacteria causing bulking and foaming in activated sludge plants. <i>Water Science and Technology</i> , 1996 , 34, 137-144	2.2	12
20	Desiccation resistance of bacteria isolated from an air-handling system biofilm determined using a simple quantitative membrane filter method. <i>Letters in Applied Microbiology</i> , 1995 , 21, 41-46	2.9	19
19	Microthrix parvicellals a Novel, Deep Branching Member of the Actinomycetes Subphylum. <i>Systematic and Applied Microbiology</i> , 1995 , 17, 513-518	4.2	52
18	Phylogenetic Analysis and Taxonomic History of Nocardia pinensis and Nocardia amarae. <i>Systematic and Applied Microbiology</i> , 1995 , 17, 519-525	4.2	11
17	Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 1910-6	4.8	308
16	Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. <i>International Journal of Systematic Bacteriology</i> , 1994 , 44, 427-34		197
15	A Phylogenetic Analysis of the Genus Blastobacter with a View to its Future Reclassification. <i>Systematic and Applied Microbiology</i> , 1994 , 17, 51-57	4.2	16

LIST OF PUBLICATIONS

14	Heterotrophic bacteria in an air-handling system. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 3914 ₄ 20	54
13	Stimulation of aldrin and dieldrin loss from soils treated with carbon amendments and saturated-ring analogues. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1990 , 45, 223-7	7
12	Photosynthesis is not a universal feature of the phylum Cyanobacteria	3
11	CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes	10
10	CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes	10
9	Metabolic flexibility allows generalist bacteria to become dominant in a frequently disturbed ecosystem	13
8	Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy	18
7	A rooted phylogeny resolves early bacterial evolution	5
7	A rooted phylogeny resolves early bacterial evolution A proposal for a standardized bacterial taxonomy based on genome phylogeny	32
6	A proposal for a standardized bacterial taxonomy based on genome phylogeny	32
6 5	A proposal for a standardized bacterial taxonomy based on genome phylogeny American Gut: an Open Platform for Citizen-Science Microbiome Research	32
6 5 4	A proposal for a standardized bacterial taxonomy based on genome phylogeny American Gut: an Open Platform for Citizen-Science Microbiome Research Further expansion of methane metabolism in the Archaea	32 11 1