List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Approaches to Solving the Maximum Possible Earthquake Magnitude (Mmax) Problem. Surveys in Geophysics, 2022, 43, 561-595.	4.6	8
2	The Variability of Earthquake Parameters with the Depth: Evidences of Difference of Mechanisms of Generation of the Shallow, Intermediate-Depth, and the Deep Earthquakes. Pure and Applied Geophysics, 2022, 179, 4197-4206.	1.9	5
3	Assessment of Earthquake Hazard from Data on Displacements of Bedrock Blocks: The Alai Valley, Kirgizia. Journal of Volcanology and Seismology, 2022, 16, 67-80.	0.7	Ο
4	Development of shale hydrocarbon resources: geo-environmental risks. Geologia Nefti I Gaza, 2022, , 109-118.	0.3	3
5	Permeability of the Continental Crust –Possible High Values from Laboratory Measurements and Seismological Data. Innovation and Discovery in Russian Science and Engineering, 2021, , 481-498.	0.2	0
6	Maximum Earthquakes in Future Time Intervals. Izvestiya, Physics of the Solid Earth, 2021, 57, 163-179.	0.9	5
7	Late Clacial and postglacial seismicity in the Northeastern Fennoscandian Shield: tectonic position and age of paleo-earthquakes near Murmansk. Bulletin of the Geological Society of Finland, 2021, 93, 53-72.	0.8	3
8	Earthquake Prediction: Old Expectations and New Results. Seismic Instruments, 2021, 57, 438-445.	0.3	1
9	On the foreshock cascade and extraordinary forecasts in connection with the article by A.I. Malyshev and L.K. Malysheva "Precedent-extrapolation estimate of the seismic hazard in the Sakhalin and the Southern Kurils region― Geosystems of Transition Zones, 2021, 5, 128-137.	0.3	Ο
10	Archeological Monuments: Evidence of Strong Earthquakes in the Past (Using the Example of the) Tj ETQq0 0 C Physics, 2021, 57, 1396-1413.	rgBT /Ove 0.9	rlock 10 Tf 50 1
11	Relationships of the Seismicity at the Alaska Subduction Zone to Metamorphism and the Deep Fluid Regime. Izvestiya, Physics of the Solid Earth, 2020, 56, 892-899.	0.9	1
12	Stable Modification of Frequency–Magnitude Relation and Prospects for Its Application in Seismic Zoning. Izvestiya, Physics of the Solid Earth, 2020, 56, 53-65.	0.9	6
13	Statistics and Spatial–Temporal Structure of Ground Acceleration Caused by Earthquakes in the North-Western Pacific. Pure and Applied Geophysics, 2020, 177, 2563-2578.	1.9	3
14	A Typical Foreshock and Aftershock Anomaly: Observations, Interpretation, and Applications. Journal of Volcanology and Seismology, 2020, 14, 58-69.	0.7	5
15	Elastic anisotropy, permeability, and freeze-thaw cycling of rapakivi granite. International Journal of Rock Mechanics and Minings Sciences, 2020, 136, 104541.	5.8	12
16	Intermediate-depth earthquakes and the connection of the seismicity with metamorphism and deep fluid regime in subduction zone for the North Island of New Zealand. Geosystems of Transition Zones, 2020, 4, 103-115.	0.3	2
17	An Analysis of the Generalized Vicinity of a Large Earthquake Using Regional Data: The Kuril–Kamchatka Region. Journal of Volcanology and Seismology, 2020, 14, 410-419.	0.7	4
18	Microseismic and Vibroseismic Testing of a House: Comparative Study of Results with the Example of a Typical Privately Owned Residential House in Bishkek, Kyrgyzstan. Seismic Instruments, 2019, 55, 92-100.	0.3	3

#	Article	IF	CITATIONS
19	Paleoseismicity of Adyr Faults: The Kokonadyr–Tegerek Fault, Southwestern Issyk-Kul Region, the Tien Shan. Journal of Volcanology and Seismology, 2019, 13, 305-322.	0.7	8
20	Declustering of Seismicity Flow: Statistical Analysis. Izvestiya, Physics of the Solid Earth, 2019, 55, 733-745.	0.9	20
21	Earth's Surface Deformation on Mount Etna: GPS Measurements, Interpretation, Relationship to the Mode of Volcanism. Journal of Volcanology and Seismology, 2019, 13, 7-16.	0.7	2
22	Estimation of maximum mass velocity from macroseismic data: A new method and application to archeoseismological data. Geodesy and Geodynamics, 2019, 10, 321-330.	2.2	4
23	Comparison of the contribution of differently depth geological processes in the formation of a trace elements characteristic of caustobiolites. Georesursy, 2019, 21, 14-24.	0.8	7
24	Structural Position and Parameters of the Paleoearthquakes in the Area of Vottovaara Mountain (Middle Karelia, Eastern Part of the Fennoscandian Shield). Seismic Instruments, 2018, 54, 199-218.	0.3	14
25	Strong Paleoearthquakes along the Aksuu Border Fault according to the Results of Dating the Offset Terrace Complex of the Chon-Aksuu River, Northern Tien Shan. Izvestiya, Physics of the Solid Earth, 2018, 54, 252-268.	0.9	9
26	Post-seismic relaxation from geodetic and seismic data. Geodesy and Geodynamics, 2017, 8, 13-16.	2.2	6
27	Assessment of earthquake hazard for the northwestern Vietnam from geological and geophysical data using an original program package. Journal of Volcanology and Seismology, 2017, 11, 164-171.	0.7	3
28	The Estimation of Probability of Extreme Events for Small Samples. Pure and Applied Geophysics, 2017, 174, 1547-1560.	1.9	15
29	On the seismotectonic setting in the ocean side of deep trenches. Russian Journal of Pacific Geology, 2017, 11, 11-18.	0.7	2
30	Effect of the Earth's rotation on subduction processes. Doklady Earth Sciences, 2017, 476, 1109-1112.	0.7	2
31	Probability estimation of rare extreme events in the case of small samples: Technique and examples of analysis of earthquake catalogs. Izvestiya, Physics of the Solid Earth, 2017, 53, 805-818.	0.9	3
32	Strong Medieval Earthquake in the Northern Issyk-Kul Lake Region (Tien Shan): Results of Paleoseismological and Archeoseismological Studies. Izvestiya - Atmospheric and Oceanic Physics, 2017, 53, 734-747.	0.9	16
33	A Tectonophysical Analysis of Earthquake Frequency—Size Relationship Types for Catastrophic Earthquakes in Central Asia. Journal of Volcanology and Seismology, 2017, 11, 434-446.	0.7	3
34	The typical seismic behavior in the vicinity of a large earthquake. Physics and Chemistry of the Earth, 2016, 95, 73-84.	2.9	14
35	Paleoseismological and archaeoseismological data from the western Alabash–Konurolen intramontane basin (<i>southern Lake Issyk Kul area</i> , <i>Kyrgyzstan</i>). Russian Geology and Geophysics, 2016, 57, 1090-1098.	0.7	14
36	Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgyzstan). Sedimentary Geology, 2016, 344, 112-122.	2.1	41

#	Article	IF	CITATIONS
37	Comprehensive paleoseismic geological studies in a key site in southwestern Kola Peninsula (Northeast of the Fennoscandian Shield). Doklady Earth Sciences, 2016, 469, 656-660.	0.7	12
38	Archaeoseismological studies and structural position of the medieval earthquakes in the South of the Issyk-Kul depression (Tien Shan). Izvestiya, Physics of the Solid Earth, 2016, 52, 218-232.	0.9	19
39	Estimation of maximum mass velocities in the focal zones of strong earthquakes based on measured displacements of rock blocks: A case study of Kyrgyzstan. Seismic Instruments, 2016, 52, 315-322.	0.3	5
40	The relative role of lower and upper crustal processes in the formation of trace element compositions of oils. Geochemistry International, 2016, 54, 989-995.	0.7	5
41	The evolution of the stress state in Southern California based on the geomechanical model and current seismicity. Izvestiya, Physics of the Solid Earth, 2016, 52, 117-128.	0.9	31
42	Reply to: "Comment on Pisarenko et al., â€ [~] Characterization of the Tail of the Distribution of Earthquake Magnitudes by Combining the GEV and GPD Descriptions of Extreme Value Theory'―by Mathias Raschke in Pure Appl Geophys (2015). Pure and Applied Geophysics, 2016, 173, 709-713.	1.9	1
43	Study of ore deposits by the dynamic systems investigation methods: 1. Calculation of the correlation dimension. Izvestiya, Physics of the Solid Earth, 2015, 51, 419-427.	0.9	1
44	Study of ore deposits by the dynamic systems investigation methods: 2. Clustering of ore deposits and interpretation of the results. Izvestiya, Physics of the Solid Earth, 2015, 51, 428-436.	0.9	0
45	The maximum earthquake in future T years: Checking by a real catalog. Chaos, Solitons and Fractals, 2015, 74, 89-98.	5.1	6
46	On the statistical relationship between solar activity and spontaneous social processes. Izvestiya - Atmospheric and Oceanic Physics, 2014, 50, 669-677.	0.9	0
47	Seismic Regime in the Vicinity of the 2011 Tohoku Mega Earthquake (Japan, M wÂ=Â9). Pure and Applied Geophysics, 2014, 171, 3241-3255.	1.9	3
48	Characterization of the Tail of the Distribution of Earthquake Magnitudes by Combining the GEV and GPD Descriptions of Extreme Value Theory. Pure and Applied Geophysics, 2014, 171, 1599-1624.	1.9	36
49	Paleoseismodeformations of hard rocks in the Karelian isthmus. Doklady Earth Sciences, 2014, 457, 1008-1013.	0.7	14
50	Spatiotemporal Variation of Fractal Properties in the Source Zone of the 2001 Mw 7.7 Bhuj Earthquake. Bulletin of the Seismological Society of America, 2014, 104, 2060-2072.	2.3	4
51	Estimation of the probability of strongest seismic disasters based on the extreme value theory. Izvestiya, Physics of the Solid Earth, 2014, 50, 311-324.	0.9	6
52	Heavy-Tailed Distributions and Their Properties. SpringerBriefs in Earth Sciences, 2014, , 1-7.	0.5	0
53	On the seismic regime of the Japan region before the Tohoku mega-earthquake (M w = 9). Journal of Volcanology and Seismology, 2013, 7, 243-251.	0.7	3
54	The New Avalanche-Like Stochastic Model for Parameterization of Seismicity and Its Application to the South Sakhalin Island Seismicity. International Journal of Geophysics, 2012, 2012, 1-12.	1.1	1

#	Article	IF	CITATIONS
55	Patterns of Seismicity Found in the Generalized Vicinity of a Strong Earthquake: Agreement With Common Scenarios of Instability Development. Geophysical Monograph Series, 2012, , 27-39.	0.1	7
56	A possible physical mechanism for the unusually long sequence of seismic activity following the 2001 Bhuj Mw7.7 earthquake, Gujarat, India. Tectonophysics, 2012, 536-537, 101-109.	2.2	13
57	A new model for seismicity parameterization and predictive aspects of its application to the Sakhalin region. Journal of Volcanology and Seismology, 2012, 6, 197-209.	0.7	0
58	Seismic impact estimation from data on deformations and displacements in rock massifs. Geodinamika I Tektonofizika, 2012, 3, 203-237.	0.7	14
59	Megaearthquake of March 11, 2011, in Japan: The event magnitude and the character of the aftershock sequence. Izvestiya - Atmospheric and Oceanic Physics, 2011, 47, 941-950.	0.9	10
60	Seismic imaging of the 2001 Bhuj Mw7.7 earthquake source zone: b-value, fractal dimension and seismic velocity tomography studies. Tectonophysics, 2011, 512, 1-11.	2.2	17
61	Alternative to SOC concept-model of seismic regime as a set of episodes of random avalanche-like releases occurring on a set of metastable subsystems. Izvestiya, Physics of the Solid Earth, 2011, 47, 966-973.	0.9	9
62	Specific features of the seismic regime in the lithosphere: Manifestations of the deep aqueous fluid action. Izvestiya, Physics of the Solid Earth, 2010, 46, 451-459.	0.9	2
63	Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923–2007). Earth, Planets and Space, 2010, 62, 567-578.	2.5	27
64	Heavy-Tailed Distributions in Disaster Analysis. Advances in Natural and Technological Hazards Research, 2010, , .	1.1	58
65	The Nonlinear and Linear Modes of Growth of the Cumulative Seismic Moment. Advances in Natural and Technological Hazards Research, 2010, , 85-113.	1.1	0
66	Relationship Between Earthquake Losses and Social and Economic Situation. Advances in Natural and Technological Hazards Research, 2010, , 159-172.	1.1	0
67	Models for the Generation of Distributions of Different Types. Advances in Natural and Technological Hazards Research, 2010, , 23-37.	1.1	0
68	Nonlinear and Linear Growth of Cumulative Effects of Natural Disasters. Advances in Natural and Technological Hazards Research, 2010, , 55-83.	1.1	0
69	Nonparametric Methods in the Study of Distributions. Advances in Natural and Technological Hazards Research, 2010, , 39-53.	1.1	0
70	Power distributions in ore and oil genesis – interpretation and generating mechanisms. Russian Journal of Earth Sciences, 2010, 11, 1-6.	0.7	1
71	Estimating the Uppermost Tail of a Distribution. Advances in Natural and Technological Hazards Research, 2010, , 115-157.	1.1	0
72	Day-time variations of foF2 connected to strong earthquakes. Natural Hazards and Earth System Sciences, 2009, 9, 53-59.	3.6	12

#	Article	IF	CITATIONS
73	Possible influence of polymorphic transitions in minerals (according to the quartz example) on seismotectonic processes in the lithosphere. Izvestiya, Physics of the Solid Earth, 2009, 45, 338-346.	0.9	2
74	The instability of the M max parameter and an alternative to its using. Izvestiya, Physics of the Solid Earth, 2009, 45, 1081-1092.	0.9	10
75	New Approach to the Characterization of M max and of the Tail of the Distribution of Earthquake Magnitudes. Pure and Applied Geophysics, 2008, 165, 847-888.	1.9	49
76	Seismicity in the generalized vicinity of large earthquakes. Journal of Volcanology and Seismology, 2008, 2, 435-445.	0.7	27
77	Models of generation of power laws of distribution in the processes of seismicity and in formation of oil fields and ore deposits. Russian Journal of Earth Sciences, 2008, 10, 1-9.	0.7	7
78	foF2 seismo-ionospheric effect analysis: actual data and numerical simulations. Natural Hazards and Earth System Sciences, 2008, 8, 1387-1393.	3.6	10
79	Damage from natural disasters: Fast growth of losses or stable ratio?. Russian Journal of Earth Sciences, 2008, 10, 1-11.	0.7	2
80	Possible nature of the seismic boundary at a depth of 70 km. Doklady Earth Sciences, 2007, 414, 578-581.	0.7	2
81	Fuzzy logic algorithms in the analysis of electrotelluric data with reference to monitoring of volcanic activity. Izvestiya, Physics of the Solid Earth, 2007, 43, 597-609.	0.9	9
82	On variations of <i>fo</i> F2 and F-spread before strong earthquakes in Japan. Natural Hazards and Earth System Sciences, 2006, 6, 735-739.	3.6	19
83	Implications of differences in thermodynamic conditions for the seismic process. Izvestiya, Physics of the Solid Earth, 2006, 42, 745-754.	0.9	5
84	Natural disasters: Statistics and forecasts. Herald of the Russian Academy of Sciences, 2006, 76, 542-548.	0.6	1
85	Conductivity structure of the upper mantle in an active subduction zone. Journal of Geodynamics, 1996, 21, 355-364.	1.6	6
86	The quantitative deep earthquakes model. , 1989, , 213-218.		3
87	EXTREME EARTHQUAKE DISASTERS â€" VERIFICATION OF THE METHOD OF PARAMETERIZATION OF THE		3