Li Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849103/publications.pdf

Version: 2024-02-01

163	17,050	71	126
papers	citations	h-index	g-index
163	163	163	12031 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Aprotic and Aqueous Li–O ₂ Batteries. Chemical Reviews, 2014, 114, 5611-5640.	47.7	975
2	Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 2020, 120, 7020-7063.	47.7	957
3	Toward sustainable and systematic recycling of spent rechargeable batteries. Chemical Society Reviews, 2018, 47, 7239-7302.	38.1	624
4	The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016, 3, 487-516.	12.2	592
5	Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials, 2010, 176, 288-293.	12.4	469
6	Structural and Electrochemical Study of Al ₂ O ₃ and TiO ₂ Coated Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂ Cathode Material Using ALD. Advanced Energy Materials, 2013, 3, 1299-1307.	19.5	418
7	Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 2010, 30, 2615-2621.	7.4	389
8	Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters, 2013, 13, 4642-4649.	9.1	385
9	Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources, 2012, 218, 21-27.	7.8	378
10	Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. Journal of Power Sources, 2013, 233, 180-189.	7.8	378
11	Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 2015, 282, 544-551.	7.8	343
12	Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustainable Chemistry and Engineering, 2017, 5, 5224-5233.	6.7	301
13	A Highâ€Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries. Advanced Materials, 2020, 32, e2002168.	21.0	281
14	Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technology, 2009, 100, 6163-6169.	9.6	273
15	Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for Lithium-Ion Batteries. Nano Letters, 2014, 14, 5899-5904.	9.1	268
16	Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management, 2018, 71, 362-371.	7.4	267
17	Electrolytes and Electrolyte/Electrode Interfaces in Sodiumâ€ion Batteries: From Scientific Research to Practical Application. Advanced Materials, 2019, 31, e1808393.	21.0	264
18	Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 2014, 262, 380-385.	7.8	242

#	Article	IF	CITATIONS
19	The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews, 2018, 1, 461-482.	25.5	215
20	A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy, 2017, 39, 273-283.	16.0	208
21	Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy, 2011, 108, 220-225.	4.3	187
22	Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. Journal of Power Sources, 2018, 377, 70-79.	7.8	184
23	Selfâ€Assembly of 0D–2D Heterostructure Electrocatalyst from MOF and MXene for Boosted Lithium Polysulfide Conversion Reaction. Advanced Materials, 2021, 33, e2101204.	21.0	183
24	Advanced High Energy Density Secondary Batteries with Multiâ€Electron Reaction Materials. Advanced Science, 2016, 3, 1600051.	11.2	180
25	A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13527-13554.	6.7	179
26	Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode. Journal of Physical Chemistry C, 2011, 115, 24411-24417.	3.1	172
27	Anode Interface Engineering and Architecture Design for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1806532.	21.0	172
28	Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy, 2018, 53, 524-535.	16.0	165
29	Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15, 164-176.	16.0	162
30	An Effective Approach To Protect Lithium Anode and Improve Cycle Performance for Li–S Batteries. ACS Applied Materials & Date (1978) and Samp; Interfaces, 2014, 6, 15542-15549.	8.0	157
31	Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries. Nano Energy, 2019, 64, 103965.	16.0	153
32	Selective Recovery of Li and Fe from Spent Lithium-Ion Batteries by an Environmentally Friendly Mechanochemical Approach. ACS Sustainable Chemistry and Engineering, 2018, 6, 11029-11035.	6.7	152
33	Sustainable Recycling and Regeneration of Cathode Scraps from Industrial Production of Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 7041-7049.	6.7	148
34	Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Letters, 2021, 13, 203.	27.0	143
35	An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. Journal of Power Sources, 2016, 306, 70-77.	7.8	140
36	Innovative Application of Acid Leaching to Regenerate Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ Cathodes from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5959-5968.	6.7	140

#	Article	IF	CITATIONS
37	Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31669-31676.	8.0	139
38	Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chemistry, 2019, 21, 5904-5913.	9.0	136
39	Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100810.	21.0	121
40	Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horizons, 2016, 1, 423-444.	8.0	119
41	Boosting Fast Sodium Storage of a Largeâ€Scalable Carbon Anode with an Ultralong Cycle Life. Advanced Energy Materials, 2018, 8, 1703159.	19.5	119
42	Novel Solidâ€State Li/LiFePO ₄ Battery Configuration with a Ternary Nanocomposite Electrolyte for Practical Applications. Advanced Materials, 2011, 23, 5081-5085.	21.0	116
43	Conversion Mechanisms of Selective Extraction of Lithium from Spent Lithium-lon Batteries by Sulfation Roasting. ACS Applied Materials & Sulfation Roasting.	8.0	115
44	Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15537-15542.	8.0	113
45	Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy, 2019, 60, 866-874.	16.0	113
46	A 3D flower-like VO ₂ /MXene hybrid architecture with superior anode performance for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 1315-1322.	10.3	112
47	Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 16144-16150.	6.7	111
48	Toward Practical Highâ€Energy Batteries: A Modularâ€Assembled Ovalâ€Like Carbon Microstructure for Thick Sulfur Electrodes. Advanced Materials, 2017, 29, 1700598.	21.0	110
49	A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Management, 2019, 85, 437-444.	7.4	110
50	A Chemical Precipitation Method Preparing Hollow–Core–Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodiumâ€ion Batteries. Small, 2018, 14, e1801246.	10.0	104
51	"Liquid-in-Solid―and "Solid-in-Liquid―Electrolytes with High Rate Capacity and Long Cycling Life for Lithium-Ion Batteries. Chemistry of Materials, 2016, 28, 848-856.	6.7	100
52	Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. Journal of Power Sources, 2014, 249, 28-34.	7.8	98
53	Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. Journal of Power Sources, 2013, 228, 206-213.	7.8	97
54	Structural and Electrochemical Study of Hierarchical LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21939-21947.	8.0	95

#	Article	IF	CITATIONS
55	Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16078-16086.	8.0	95
56	Na2NixCo1â^'xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries. Electrochemistry Communications, 2015, 59, 91-94.	4.7	93
57	Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Nano Energy, 2017, 31, 9-18.	16.0	91
58	Boosting Highâ€Rate Li–S Batteries by an MOFâ€Derived Catalytic Electrode with a Layerâ€byâ€Layer Structure Advanced Science, 2019, 6, 1802362.	11.2	91
59	Platinumâ€Coated Hollow Graphene Nanocages as Cathode Used in Lithiumâ€Oxygen Batteries. Advanced Functional Materials, 2016, 26, 7626-7633.	14.9	88
60	Electrocatalytic Interlayer with Fast Lithium–Polysulfides Diffusion for Lithium–Sulfur Batteries to Enhance Electrochemical Kinetics under Lean Electrolyte Conditions. Advanced Functional Materials, 2020, 30, 2000742.	14.9	87
61	High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. Journal of Power Sources, 2013, 233, 115-120.	7.8	86
62	Life Cycle Assessment of Lithium-ion Batteries: A Critical Review. Resources, Conservation and Recycling, 2022, 180, 106164.	10.8	86
63	Sulfur Nanodots Stitched in 2D "Bubble-Like―Interconnected Carbon Fabric as Reversibility-Enhanced Cathodes for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 4694-4702.	14.6	84
64	Lithium Induced Nanoâ€Sized Copper with Exposed Lithiophilic Surfaces to Achieve Dense Lithium Deposition for Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2006950.	14.9	84
65	"Tai Chi―philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy, 2018, 47, 35-42.	16.0	83
66	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12559-12564.	10.3	83
67	Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy, 2020, 70, 104532.	16.0	83
68	Synergetic Anion Vacancies and Dense Heterointerfaces into Bimetal Chalcogenide Nanosheet Arrays for Boosting Electrocatalysis Sulfur Conversion. Advanced Materials, 2022, 34, e2109552.	21.0	81
69	Engineering Catalytic CoSe–ZnSe Heterojunctions Anchored on Graphene Aerogels for Bidirectional Sulfur Conversion Reactions. Advanced Science, 2022, 9, e2103456.	11.2	79
70	Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating. ACS Applied Materials & Interfaces, 2019, 11, 22339-22345.	8.0	75
71	Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. Journal of Power Sources, 2007, 172, 395-403.	7.8	74
72	Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for Highâ€Performance Lithium/Sodium Storage. Small, 2021, 17, e2102893.	10.0	72

#	Article	IF	Citations
73	Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17033-17041.	10.3	70
74	Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching. ACS Applied Energy Materials, 2021, 4, 6261-6268.	5.1	68
75	Coralline Glassy Lithium Phosphate-Coated LiFePO (sub) 4 (sub) Cathodes with Improved Power Capability for Lithium Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 6013-6021.	3.1	66
76	lonic liquid electrolytes with protective lithium difluoro(oxalate)borate for high voltage lithium-ion batteries. Nano Energy, 2015, 13, 546-553.	16.0	65
77	Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony–Indium Sulfide Anodes for Sodiumâ€ion Batteries with Favorable Kinetics. Advanced Science, 2018, 5, 1800613.	11.2	65
78	The Positive Roles of Integrated Layered-Spinel Structures Combined with Nanocoating in Low-Cost Li-Rich Cathode Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 21711-21720.	8.0	62
79	<i>In situ</i> formation of a LiF and Li–Al alloy anode protected layer on a Li metal anode with enhanced cycle life. Journal of Materials Chemistry A, 2020, 8, 1247-1253.	10.3	61
80	Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System. ACS Applied Energy Materials, 2020, 3, 8532-8542.	5.1	59
81	Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Materials, 2021, 39, 203-224.	18.0	59
82	Sulfur cathode based on layered carbon matrix for high-performance Li–S batteries. Nano Energy, 2015, 12, 742-749.	16.0	57
83	3D Reticular Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1516-1523.	8.0	56
84	A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid. CSEE Journal of Power and Energy Systems, 2018, 4, 219-225.	1.1	51
85	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018, 9, 1398-1414.	4.6	50
86	Magnetron Sputtering Preparation of Nitrogen-Incorporated Lithium–Aluminum–Titanium Phosphate Based Thin Film Electrolytes for All-Solid-State Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 3817-3826.	3.1	49
87	Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability. Journal of Power Sources, 2019, 436, 226868.	7.8	48
88	Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li–S batteries. Chemical Communications, 2020, 56, 3007-3010.	4.1	48
89	A simple solvent method for the recovery of LixCoO2 and its applications in alkaline rechargeable batteries. Journal of Power Sources, 2014, 252, 286-291.	7.8	46
90	Fe ₂ VO ₄ Nanoparticles Anchored on Ordered Mesoporous Carbon with Pseudocapacitive Behaviors for Efficient Sodium Storage. Advanced Functional Materials, 2021, 31, 2009756.	14.9	46

#	Article	IF	CITATIONS
91	Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries. ACS Applied Materials & Diterfaces, 2020, 12, 13950-13958.	8.0	45
92	Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202, 322-331.	7.8	43
93	Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries. Nanoscale, 2014, 6, 10611.	5.6	41
94	Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li–S batteries. Chemical Engineering Journal, 2022, 430, 132734.	12.7	40
95	Surface modification of spinel λ-MnO 2 and its lithium adsorption properties from spent lithium ion batteries. Applied Surface Science, 2014, 315, 59-65.	6.1	39
96	A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries. Journal of Materials Chemistry A, 2013, 1, 3659.	10.3	37
97	The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. Journal of Power Sources, 2014, 245, 898-907.	7.8	36
98	Stable Nanostructured Cathode with Polycrystalline Li-Deficient Li _{0.28} Co _{0.29} Ni _{0.30} Mn _{0.20} O ₂ for Lithium-Ion Batteries. Nano Letters, 2014, 14, 1281-1287.	9.1	36
99	Surface modification of a cobalt-free layered Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ oxide with the FePO ₄ /Li ₃ PO ₄ composite as the cathode for lithium-ion batteries. Journal of Materials Chemistry A. 2015. 3, 9528-9537.	10.3	36
100	Physicochemical properties of new amide-based protic ionic liquids and their use as materials for anhydrous proton conductors. Electrochimica Acta, 2011, 56, 7503-7509.	5.2	35
101	Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. Journal of Materials Chemistry A, 2017, 5, 24677-24685.	10.3	35
102	Advanced Characterization Techniques Paving the Way for Commercialization of Low ost Prussian Blue Analog Cathodes. Advanced Functional Materials, 2022, 32, 2108616.	14.9	35
103	Sustainable Upcycling of Spent Lithiumâ€lon Batteries Cathode Materials: Stabilization by In Situ Li/Mn Disorder. Advanced Energy Materials, 2022, 12, .	19.5	35
104	Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries. Science Bulletin, 2012, 57, 4188-4194.	1.7	34
105	MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. Nanoscale, 2020, 12, 9416-9422.	5.6	34
106	Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. Journal of Materials Chemistry A, 2022, 10, 682-689.	10.3	34
107	Fast sodium storage kinetics of lantern-like Ti0.25Sn0.75S2 connected via carbon nanotubes. Energy Storage Materials, 2018, 11, 100-111.	18.0	33
108	Sustainable Regeneration of High-Performance Li _{1â€"<i>x</i>xxx} xx	5.1	33

#	Article	IF	CITATIONS
109	Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for Lithium–lon Battery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22305-22315.	8.0	31
110	Novel Binary Room-Temperature Complex Electrolytes Based on LiTFSI and Organic Compounds with Acylamino Group. Journal of the Electrochemical Society, 2005, 152, A1979.	2.9	30
111	Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries. Waste Management, 2020, 114, 166-173.	7.4	30
112	Carbon Dot-Regulated 2D MXene Films with High Volumetric Capacitance. Industrial & Engineering Chemistry Research, 2020, 59, 13969-13978.	3.7	29
113	A leaf-like Al ₂ O ₃ -based quasi-solid electrolyte with a fast Li ⁺ conductive interface for stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 7280-7287.	10.3	29
114	Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries. ACS Omega, 2017, 2, 5601-5610.	3.5	28
115	Long-life lithium-O2 battery achieved by integrating quasi-solid electrolyte and highly active Pt3Co nanowires catalyst. Energy Storage Materials, 2020, 24, 707-713.	18.0	28
116	<i>In situ</i> formation of a Li–Sn alloy protected layer for inducing lateral growth of dendrites. Journal of Materials Chemistry A, 2020, 8, 23574-23579.	10.3	28
117	Co ₉ S ₈ Nanorods as an Electrocatalyst To Enhance Polysulfide Conversion and Alleviate Passivation in Li–S Batteries under Lean Electrolyte Conditions. ACS Applied Materials & Amp; Interfaces, 2020, 12, 21701-21708.	8.0	28
118	Compound-Hierarchical-Sphere LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ : Synthesis, Structure, and Electrochemical Characterization. ACS Applied Materials & Distriction amp; Interfaces, 2018, 10, 32120-32127.	8.0	27
119	Oxygenated Nitrogenâ€Doped Microporous Nanocarbon as a Permselective Interlayer for Ultrastable Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 1094-1100.	3.4	27
120	Improved Electrochemical Performance of LiNi _{0.8} Cathode Materials Induced by a Facile Polymer Coating for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6205-6213.	5.1	27
121	Hierarchical Tripleâ€Shelled MnCo ₂ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials for Potassiumâ€Ion Batteries. Small, 2021, 17, e2007597.	10.0	26
122	Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. ACS Applied Materials & Enhances, 2021, 13, 38202-38212.	8.0	25
123	Resolving the Structural Defects of Spent Li _{1â^'} <i>_x</i> CoO ₂ Particles to Directly Reconstruct High Voltage Performance Cathode for Lithiumâ€ion Batteries. Small Methods, 2021, 5, e2100672.	8.6	24
124	Distinctive electrochemical performance of novel Fe-based Li-rich cathode material prepared by molten salt method for lithium-ion batteries. Journal of Energy Chemistry, 2019, 33, 37-45.	12.9	23
125	High Pseudocapacitance Boosts Ultrafast, High-Capacity Sodium Storage of 3D Graphene Foam-Encapsulated TiO ₂ Architecture. ACS Applied Materials & Enterfaces, 2020, 12, 23939-23950.	8.0	23
126	A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31411-31418.	8.0	23

#	Article	IF	CITATIONS
127	Binary Complex Electrolytes Based on LiX[X=N(SO[sub 2]CF[sub 3])[sub 2][sup â^'], CF[sub 3]SO[sub 3][sup â^'], ClO[sub 4][sup â^']]-Acetamide for Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2007, 154, A703.	2.9	22
128	Effect of metal ion concentration in precursor solution on structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2. Journal of Alloys and Compounds, 2019, 778, 643-651.	5.5	22
129	Ring-chain synergy in ionic liquid electrolytes for lithium batteries. Chemical Science, 2015, 6, 7274-7283.	7.4	21
130	Stable Conversion Mn ₃ O ₄ Li-Ion Battery Anode Material with Integrated Hierarchical and Core–Shell Structure. ACS Applied Energy Materials, 2019, 2, 5206-5213.	5.1	21
131	Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. Journal of Power Sources, 2014, 245, 730-738.	7.8	20
132	Pâ€Doped Ni/NiO Heterostructured Yolkâ€Shell Nanospheres Encapsulated in Graphite for Enhanced Lithium Storage. Small, 2022, 18, e2105897.	10.0	20
133	Lithium-metal host anodes with top-to-bottom lithiophilic gradients for prolonged cycling of rechargeable lithium batteries. Journal of Power Sources, 2021, 495, 229773.	7.8	19
134	Multidimensional <scp>Co₃O₄</scp> / <scp>NiO</scp> heterojunctions with richâ€boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InformaÄnÃ-Materiály, 2022, 4, .	17.3	19
135	A facile approach of introducing DMS into LiODFB–PYR ₁₄ TFSI electrolyte for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6366-6372.	10.3	18
136	One-step recovery of valuable metals from spent Lithium-ion batteries and synthesis of persulfate through paired electrolysis. Chemical Engineering Journal, 2021, 421, 129908.	12.7	18
137	Sustainable Recycling of Cathode Scrap towards Highâ€Performance Anode Materials for Liâ€ion Batteries. Advanced Energy Materials, 2022, 12, 2103288.	19.5	18
138	Closed-loop selective recycling process of spent LiNi Co Mn O2 batteries by thermal-driven conversion. Journal of Hazardous Materials, 2022, 424, 127757.	12.4	17
139	Ultrastable Bioderived Organic Anode Induced by Synergistic Coupling of Binder/Carbon-Network for Advanced Potassium-Ion Storage. Nano Letters, 2022, 22, 4115-4123.	9.1	17
140	Binary room-temperature complex electrolytes based on LiClO4 and organic compounds with acylamino group and its characterization for electric double layer capacitors. Journal of Power Sources, 2008, 184, 402-407.	7.8	16
141	The Structureâ^'Activity Relationship and Physicochemical Properties of Acetamide-Based Brønsted Acid Ionic Liquids. Journal of Physical Chemistry C, 2010, 114, 20007-20015.	3.1	16
142	Recovered LiCoO ₂ as anode materials for Ni/Co power batteries. Physical Chemistry Chemical Physics, 2012, 14, 71-75.	2.8	15
143	Na _{1.51} Fe[Fe(CN) ₆] _{0.87} ·1.83H ₂ O Hollow Nanospheres via Nonâ€Aqueous Ballâ€Milling Route to Achieve High Initial Coulombic Efficiency and High Rate Capability in Sodiumâ€Ion Batteries. Small Methods, 2022, 6, .	8.6	15
144	A Study of High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ and High-Capacity Li _{1.5} Ni _{0.25} Mn _{0.75} O _{2.5} Blends. Journal of the Electrochemical Society, 2013, 160, A1079-A1083.	2.9	14

#	Article	IF	Citations
145	All-iron sodium-ion full-cells assembled via stable porous goethite nanorods with low strain and fast kinetics. Nano Energy, 2019, 60, 294-304.	16.0	14
146	Bimetallic Antimony–Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage. ACS Applied Materials & Sodium Storage.	8.0	14
147	Vertical Channels Design for Polymer Electrolyte to Enhance Mechanical Strength and Ion Conductivity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42957-42965.	8.0	14
148	Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 942-952.	4.9	14
149	Freestanding Nâ€Doped Carbon Coated CuO Array Anode for Lithium″on and Sodium″on Batteries. Energy Technology, 2019, 7, 1900252.	3.8	13
150	Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion replacement. Frontiers of Chemical Science and Engineering, 2021, 15, 1243-1256.	4.4	13
151	In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries. Journal of Materials Science, 2019, 54, 9098-9110.	3.7	12
152	A lithium-ion battery recycling technology based on a controllable product morphology and excellent performance. Journal of Materials Chemistry A, 2021, 9, 18623-18631.	10.3	11
153	Recovery valuable metals from spent lithium-ion batteries via a low-temperature roasting approach: Thermodynamics and conversion mechanism. Journal of Hazardous Materials Advances, 2021, 1, 100003.	3.0	11
154	Enhancing the Long Cycle Performance of Li–O ₂ Batteries at High Temperatures Using Metal–Organic Framework-Based Electrolytes. ACS Applied Energy Materials, 2022, 5, 7185-7191.	5.1	10
155	Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries. Nano Research, 2022, 15, 3143-3149.	10.4	9
156	Physicochemical Properties of New Binary Protic Ionic Liquids Based on 2-Imidazolidone and Trifluoroacetic Acid. Journal of the Electrochemical Society, 2011, 158, G227.	2.9	6
157	How does lithium oxalyldifluoroborate enable the compatibility of ionic liquids and carbon-based capacitors?. Journal of Power Sources, 2015, 276, 299-308.	7.8	5
158	Lightweight Shield to Stabilize Li Metal Anodes at High Current Rates. ACS Applied Energy Materials, 2021, 4, 11878-11885.	5.1	5
159	Novel Micronano Thin Film Based on Li–B–P–O Target Incorporating Nitrogen as Electrolyte: How Does Local Structure Influence Chemical and Electrochemical Performances?. Journal of Physical Chemistry C, 0, , 130916080633007.	3.1	3
160	Constructing heterostructured Li–Fe–Ni–Mn–O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage. Physical Chemistry Chemical Physics, 2017, 19, 22494-22501.	2.8	3
161	Fast Capacitive Energy Storage and Long Cycle Life in a Deintercalation–Intercalation Cathode Material. Small, 2020, 16, 1906025.	10.0	2
162	Advanced Li–S Batteries Enabled by a Biomimetic Polysulfide-Engulfing Net. ACS Applied Materials & Interfaces, 2021, 13, 23811-23821.	8.0	2

#	Article	IF	CITATIONS
163	Recycling of Rechargeable Batteries: Insights from a Bibliometricsâ€Based Analysis of Emerging Publishing and Research Trends. Advanced Energy and Sustainability Research, 2022, 3, 2100153.	5.8	1