Abdolreza Ardeshirylajimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1848999/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Reviews and Reports, 2020, 16, 427-433.	1.7	261
2	PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydrate Polymers, 2015, 118, 133-142.	5.1	158
3	The Clinical Trials of Mesenchymal Stem Cell Therapy in Skin Diseases: An Update and Concise Review. Current Stem Cell Research and Therapy, 2019, 14, 22-33.	0.6	103
4	The exosomes released from different cell types and their effects in wound healing. Journal of Cellular Biochemistry, 2018, 119, 5043-5052.	1.2	82
5	Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Molecular Biology Reports, 2013, 40, 4287-4294.	1.0	78
6	Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell and Tissue Research, 2013, 354, 849-860.	1.5	71
7	Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds. Journal of Cellular Physiology, 2018, 233, 6509-6522.	2.0	70
8	Occupancy of human EPCR by protein C induces β-arrestin-2 biased PAR1 signaling by both APC and thrombin. Blood, 2016, 128, 1884-1893.	0.6	63
9	Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field. Journal of Cellular Physiology, 2018, 233, 1061-1070.	2.0	60
10	Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. European Polymer Journal, 2020, 140, 110051.	2.6	57
11	Comparison of osteogenic differentiation potential of human adult stem cells loaded on bioceramicâ€coated electrospun poly (Lâ€lactide) nanofibres. Cell Proliferation, 2015, 48, 47-58.	2.4	55
12	Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β atenin signaling in endothelial cells. Journal of Thrombosis and Haemostasis, 2016, 14, 2261-2273.	1.9	50
13	Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in <i>inÂvitro</i> and <i>inÂvivo</i> models. Cell Proliferation, 2015, 48, 455-464.	2.4	47
14	Biological behavior of the curcumin incorporated chitosan/poly(vinyl alcohol) nanofibers for biomedical applications. Journal of Cellular Biochemistry, 2019, 120, 15410-15421.	1.2	45
15	Improved proliferation and osteogenic differentiation of mesenchymal stem cells on polyaniline composited by polyethersulfone nanofibers. Biologicals, 2017, 45, 78-84.	O.5	42
16	A comparative study of osteogenic differentiation human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells. Cell Journal, 2014, 16, 235-44.	0.2	42
17	Enhanced Skin Regeneration by Herbal Extractâ€Coated Poly‣‣actic Acid Nanofibrous Scaffold. Artificial Organs, 2017, 41, E296-E307.	1.0	41
18	Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals, 2017, 46, 23-28.	0.5	40

#	Article	IF	CITATIONS
19	Inorganic polyphosphate: a key modulator of inflammation. Journal of Thrombosis and Haemostasis, 2017, 15, 213-218.	1.9	39
20	<i>In vitro</i> fibroblast migration by sustained release of PDGF-BB loaded in chitosan nanoparticles incorporated in electrospun nanofibers for wound dressing applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 511-520.	1.9	39
21	Coating of electrospun poly(lacticâ€coâ€glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biology International, 2014, 38, 1271-1279.	1.4	36
22	In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers. Gene, 2019, 696, 72-79.	1.0	36
23	Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering. Molecular Biology Reports, 2014, 41, 741-749.	1.0	34
24	Microâ€RNAâ€incorporated electrospun nanofibers improve osteogenic differentiation of humanâ€induced pluripotent stem cells. Journal of Biomedical Materials Research - Part A, 2020, 108, 377-386.	2.1	34
25	Wound healing improvement by curcuminâ€loaded electrospun nanofibers and BFPâ€MSCs as a bioactive dressing. Polymers for Advanced Technologies, 2020, 31, 1519-1531.	1.6	32
26	Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering. Journal of Cellular Biochemistry, 2017, 118, 3034-3042.	1.2	31
27	Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering. Gene, 2018, 676, 195-201.	1.0	31
28	<i>In vitro</i> osteogenic differentiation of stem cells with different sources on composite scaffold containing natural bioceramic and polycaprolactone. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 300-307.	1.9	31
29	The synergistic effect of surface topography and sustained release of TCFâ€î²1 on myogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 1610-1621.	2.1	30
30	Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 3058-3066.	1.9	30
31	Efficient osteogenic differentiation of the dental pulp stem cells on βâ€glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers. Journal of Cellular Physiology, 2019, 234, 13951-13958.	2.0	30
32	Bioactive glass ceramic nanoparticles-coated poly(l -lactic acid) scaffold improved osteogenic differentiation of adipose stem cells in equine. Tissue and Cell, 2017, 49, 565-572.	1.0	29
33	Improvement of hepatogenic differentiation of iPS cells on an aligned polyethersulfone compared to random nanofibers. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 853-860.	1.9	28
34	Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2019, 173, 194-201.	2.5	28
35	3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS Omega, 2021, 6, 35284-35296.	1.6	27
36	Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds. ASAIO Journal, 2017, 63, 684-691.	0.9	26

#	Article	IF	CITATIONS
37	Collagen coated electrospun polyethersulfon nanofibers improved insulin producing cells differentiation potential of human induced pluripotent stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 734-739.	1.9	26
38	Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds. Journal of Cellular Physiology, 2019, 234, 17854-17862.	2.0	26
39	Poly (3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. Journal of Cellular Physiology, 2019, 234, 11537-11544.	2.0	25
40	Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells. Iranian Journal of Basic Medical Sciences, 2014, 17, 903-11.	1.0	25
41	Combination Therapy of Stem Cell-derived Exosomes and Biomaterials in the Wound Healing. Stem Cell Reviews and Reports, 2022, 18, 1892-1911.	1.7	25
42	Enhanced chondrogenic differentiation of stem cells using an optimized electrospun nanofibrous <scp>PLLA/PEG</scp> scaffolds loaded with glucosamine. Journal of Biomedical Materials Research - Part A, 2017, 105, 2461-2474.	2.1	24
43	Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene, 2020, 740, 144534.	1.0	24
44	Enhanced chondrogenesis differentiation of human induced pluripotent stem cells by MicroRNA-140 and transforming growth factor beta 3 (TGFβ3). Biologicals, 2018, 52, 30-36.	0.5	23
45	Polyvinyl alcohol modified polyvinylidene fluorideâ€graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. Journal of Cellular Biochemistry, 2020, 121, 3185-3196.	1.2	23
46	Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Materials Science and Engineering C, 2016, 62, 398-406.	3.8	21
47	Adiposeâ€derived stem cellsâ€conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. Journal of Cellular Physiology, 2019, 234, 10315-10323.	2.0	21
48	Fat harvesting site is an important determinant of proliferation and pluripotency of adipose-derived stem cells. Biologicals, 2016, 44, 12-18.	0.5	20
49	Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges. Advances in Experimental Medicine and Biology, 2020, 1312, 19-37.	0.8	20
50	Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/l²-catenin signalling by inorganic polyphosphate. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 943-949.	1.9	19
51	Promoting osteogenic differentiation of humanâ€induced pluripotent stem cells by releasing Wntll²â€catenin signaling activator from the nanofibers. Journal of Cellular Biochemistry, 2019, 120, 6339-6346.	1.2	19
52	Different Porosities of Chitosan Can Influence the Osteogenic Differentiation Potential of Stem Cells. Journal of Cellular Biochemistry, 2018, 119, 625-633.	1.2	17
53	Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly(lactide-co-glycolide) nanofibrous structure. Gene, 2019, 694, 26-32.	1.0	17
54	Synergism of Electrospun Nanofibers and Pulsed Electromagnetic Field on Osteogenic Differentiation of Induced Pluripotent Stem Cells. ASAIO Journal, 2018, 64, 253-260.	0.9	16

#	Article	IF	CITATIONS
55	Zirconium modified calciumâ€silicateâ€based nanoceramics: An in vivo evaluation in a rabbit tibial defect model. International Journal of Applied Ceramic Technology, 2019, 16, 431-437.	1.1	16
56	A comprehensive overview on utilizing electromagnetic fields in bone regenerative medicine. Electromagnetic Biology and Medicine, 2019, 38, 1-20.	0.7	16
57	Accelerated wound healing process in rat by probiotic <i>Lactobacillus reuteri</i> derived ointment. Journal of Basic and Clinical Physiology and Pharmacology, 2019, 30, .	0.7	16
58	Efficient smooth muscle cell differentiation of iPS cells on curcumin-incorporated chitosan/collagen/polyvinyl-alcohol nanofibers. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 313-321.	0.7	15
59	Adapted dexamethasone delivery polyethylene oxide and poly(É›-caprolactone) construct promote mesenchymal stem cells chondrogenesis. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1640-1648.	1.9	14
60	Mir-302 cluster exhibits tumor suppressor properties on human unrestricted somatic stem cells. Tumor Biology, 2014, 35, 6657-6664.	0.8	13
61	Collagen-alginate microspheres as a 3D culture system for mouse embryonic stem cells differentiation to primordial germ cells. Biologicals, 2017, 48, 114-120.	0.5	13
62	Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering. ASAIO Journal, 2017, 63, 512-517.	0.9	13
63	Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/î²-TCP collagen-coated scaffolds. Cell and Tissue Research, 2021, 384, 403-421.	1.5	13
64	Evaluation of hypoxia inducible factor-1 alpha gene expression in colorectal cancer stages of Iranian patients. Journal of Cancer Research and Therapeutics, 2016, 12, 1313.	0.3	13
65	Hepatogenic Differentiation of Human Induced Pluripotent Stem cells on Collagen-Coated Polyethersulfone Nanofibers. ASAIO Journal, 2017, 63, 316-323.	0.9	12
66	Bone morphogenetic proteinâ€7 incorporated polycaprolactone scaffold has a great potential to improve survival and proliferation rate of the human embryonic kidney cells. Journal of Cellular Biochemistry, 2019, 120, 9859-9868.	1.2	12
67	Mucoadhesive nanofibrous membrane with anti-inflammatory activity. Polymer Bulletin, 2019, 76, 4827-4840.	1.7	12
68	Improved anticancer properties of stem cells derived exosomes by prolonged release from PCL nanofibrous structure. Gene, 2018, 665, 105-110.	1.0	11
69	Renal Differentiation of Mesenchymal Stem Cells Seeded on Nanofibrous Scaffolds Improved by Human Renal Tubular Cell Lines-Conditioned Medium. ASAIO Journal, 2017, 63, 356-363.	0.9	10
70	Improved chondrogenic response of mesenchymal stem cells to a polyethersulfone/polyaniline blended nanofibrous scaffold. Journal of Cellular Biochemistry, 2019, 120, 11358-11365.	1.2	10
71	Study on Physio-chemical Properties of plasma polymerization in C2H2/N2 plasma and Their Impact on COL X. Scientific Reports, 2017, 7, 9149.	1.6	9
72	Adipose Derived Stem Cells Conditioned Media in Combination with Bioceramic-Collagen Scaffolds Improved Calvarial Bone Healing in Hypothyroid Rats. Iranian Red Crescent Medical Journal, 2017, 19, .	0.5	9

#	Article	IF	CITATIONS
73	Improved immobilization of gelatin on a modified polyurethane urea. Journal of Bioactive and Compatible Polymers, 2015, 30, 57-73.	0.8	8
74	Role of Helicobacter pylori on cancer of human adipose-derived mesenchymal stem cells and metastasis of tumor cells—an in vitro study. Tumor Biology, 2016, 37, 3371-3378.	0.8	8
75	Improved bladder smooth muscle cell differentiation of the mesenchymal stem cells when grown on electrospun polyacrylonitrile/polyethylene oxide nanofibrous scaffold. Journal of Cellular Biochemistry, 2019, 120, 15814-15822.	1.2	8
76	VEGF-incorporated PVDF/collagen nanofibrous scaffold for bladder wall regeneration and angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 521-529.	1.8	8
77	Electrospun Polycaprolactone Nanofibers: Current Research and Applications in Biomedical Application. Advanced Pharmaceutical Bulletin, 2021, , .	0.6	8
78	Prolonged drug release using PCL–TMZ nanofibers induce the apoptotic behavior of U87 glioma cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 873-878.	1.8	7
79	Comparison of humanâ€induced pluripotent stem cells and mesenchymal stem cell differentiation potential to insulin producing cells in 2D and 3D culture systems in vitro. Journal of Cellular Physiology, 2020, 235, 4239-4246.	2.0	7
80	Nanotechnology-based products for cancer immunotherapy. Molecular Biology Reports, 2022, 49, 1389-1412.	1.0	7
81	Antitumoral potential of microvesicles extracted from human adipose-derived mesenchymal stem cells on human breast cancer cells. Journal of Cancer Research and Therapeutics, 2019, 15, 1114.	0.3	6
82	Evaluation of dermal growth of keratinocytes derived from foreskin in co-culture condition with mesenchymal stem cells on polyurethane/gelatin/amnion scaffold. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 386-396.	1.8	5
83	The effects of short-term uniaxial strain on the mechanical properties of mesenchymal stem cells upon TGF-l²1 stimulation. In Vitro Cellular and Developmental Biology - Animal, 2018, 54, 677-686.	0.7	4
84	Poly-phosphate increases SMC differentiation of mesenchymal stem cells on PLGA–polyurethane nanofibrous scaffold. Cell and Tissue Banking, 2020, 21, 495-505.	0.5	4
85	Identification Osteogenic Signaling Pathways Following Mechanical Stimulation: A Systematic Review. Current Stem Cell Research and Therapy, 2022, 17, 772-792.	0.6	4
86	The Expression of miR-31 and its Target Gene FOXP3 in Recurrent Implantation Failure Patients. International Journal of Women's Health and Reproduction Sciences, 2020, 8, 389-395.	0.2	4
87	Primordial germ cell differentiation of nuclear transfer embryonic stem cells using surface modified electroconductive scaffolds. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 371-380.	0.7	3
88	Does DNA Methylation Plays a Critical Role in Osteoblastic Differentiation of Mesenchymal Stem Cells (MSCs)?. Iranian Red Crescent Medical Journal, 2013, 15, 755-756.	0.5	3
89	Collagen-graft mixed cellulose esters membrane maintains undifferentiated morphology and markers of potential pluripotency in feeder-free culture of induced pluripotent stem cells. Biologicals, 2016, 44, 387-393.	0.5	2
90	Lymphoid lineage differentiation potential of mouse nuclear transfer embryonic stem cells. Biologicals, 2015, 43, 349-354.	0.5	1

#	Article	IF	CITATIONS
91	Application of induced pluripotent stem cells in tissue engineering. , 2022, , 483-505.		1
92	Bioinformatics analysis of Ronin gene and their potential role in pluripotency control. Gene Reports, 2018, 12, 218-224.	0.4	0
93	Induced Overexpression of THAP11 in Human Fibroblast Cells Enhances Expression of Key Pluripotency Genes. , 2019, 8, 1308.		0
94	Adipose-Derived Stem Cells Conditioned Media Promote In Vitro Osteogenic Differentiation of Hypothyroid Mesenchymal Stem Cells. Gene, Cell and Tissue, 2020, 7, .	0.2	0