List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1848819/publications.pdf Version: 2024-02-01

*М*гьЅні Ц

#	Article	IF	CITATIONS
1	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	5.5	2
2	Potassium reduced graphite functionalization: Architectural aesthetics and electrical excellence. Carbon, 2022, 186, 75-82.	10.3	0
3	Non-fused molecular photovoltaic acceptor with a planar core structure enabled by bulky and embracing-type side chains. Journal of Materials Chemistry C, 2022, 10, 2945-2949.	5.5	8
4	Unusual graphite fluoride hydrolysis toward unconventional graphene oxide for high-performance supercapacitors and Li-ion batteries. Chemical Engineering Journal, 2022, 434, 134639.	12.7	16
5	Ultrasimple air-annealed pure graphene oxide film for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 622, 960-970.	9.4	7
6	Tuning Acceptor Length in Photocatalytic <scp>Donorâ€Acceptor</scp> Conjugated Polymers for Efficient <scp>Solarâ€ŧoâ€Hydrogen</scp> Energy Conversion. Chinese Journal of Chemistry, 2022, 40, 2457-2467.	4.9	9
7	Enhanced Photocatalytic Performance of Donor–Acceptor-Type Polymers Based on a Thiophene-Contained Polycyclic Aromatic Unit. Macromolecules, 2021, 54, 2661-2666.	4.8	48
8	Employing Equivalent Circuit Models to Study the Performance of Seleniumâ€Based Solar Cells with Polymers as Hole Transport Layers. Small, 2021, 17, e2101226.	10.0	7
9	High-Performance Flexible Asymmetric Supercapacitor Paired with Indanthrone@Graphene Heterojunctions and MXene Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 41537-41544.	8.0	36
10	Transfunctionalization of graphite fluoride engineered polyaniline grafting to graphene for High–Performance flexible supercapacitors. Journal of Colloid and Interface Science, 2021, 597, 289-296.	9.4	19
11	Improving the hole transport performance of perovskite solar cells through adjusting the mobility of the as-synthesized conjugated polymer. Journal of Materials Chemistry C, 2021, 9, 3421-3428.	5.5	12
12	Side-chain-extended conjugation: a strategy for improving the photocatalytic hydrogen production performance of a linear conjugated polymer. Journal of Materials Chemistry A, 2021, 9, 8782-8791.	10.3	37
13	Zwitterionic side chain-modified conjugated polymers with greatly enhanced ambipolar charge-transport mobilities. Chemical Communications, 2021, 57, 11181-11184.	4.1	3
14	1,3,5-Triazine and dibenzo[<i>b</i> , <i>d</i>]thiophene sulfone based conjugated porous polymers for highly efficient photocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 1601-1604.	4.1	43
15	Improving Both Electron and Hole Mobilities of an Ambipolar Polymer by Integrating Sodium Sulfonateâ€Tethered Alkyl Side Chains â€. Chinese Journal of Chemistry, 2020, 38, 1663-1670.	4.9	8
16	Improving the Fill Factor of Perovskite Solar Cells by Employing an Amine-tethered Diketopyrrolopyrrole-Based Polymer as the Dopant-free Hole Transport Layer. ACS Applied Energy Materials, 2020, 3, 9600-9609.	5.1	26
17	Grapheneâ€Indanthrone Donor–΀–Acceptor Heterojunctions for Highâ€Performance Flexible Supercapacitors. Advanced Energy Materials, 2020, 10, 2000181.	19.5	43
18	Diketopyrrolopyrrole-Based Donor–Acceptor Conjugated Microporous Polymers for Visible-Light-Driven Photocatalytic Hydrogen Production from Water. Macromolecules, 2020, 53, 2454-2463.	4.8	59

#	Article	IF	CITATIONS
19	Research Advances on the Mechanism of Polymer Solubilization and Selective Separation of Single-Wall Carbon Nanotubes. Chinese Journal of Organic Chemistry, 2020, 40, 3249.	1.3	1
20	Polymerizable C70 derivatives with acrylate functionality for efficient and stable solar cells. Tetrahedron, 2019, 75, 4676-4685.	1.9	4
21	Dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimides: a versatile electron-deficient building block for polymeric semiconductors. Chemical Communications, 2019, 55, 10234-10237.	4.1	10
22	Basicityâ€Engineered Graphite Fluoride Functionalization and Beyond: An Unusual Reaction between Ultraweak Nucleophile and Ultrastrong Cĩ£¿F Bonds. Advanced Functional Materials, 2019, 29, 1906076.	14.9	15
23	<i>In situ</i> tunable pillaring of compact and high-density graphite fluoride with pseudocapacitive diamines for supercapacitors with combined predominance in gravimetric and volumetric performances. Journal of Materials Chemistry A, 2019, 7, 3353-3365.	10.3	28
24	A new organic-inorganic bismuth halide crystal structure and quantum dot bearing long-chain alkylammonium cations. Organic Electronics, 2019, 70, 155-161.	2.6	4
25	Nonmainstream Outâ€Plane Fluoro―and Aminoâ€Cofunctionalized Graphene for a Striking Electrocatalyst: Programming Substitutive/Reductive Defluorination toward Graphite Fluoride. Advanced Materials Interfaces, 2019, 6, 1801699.	3.7	6
26	Chlorobenzene: A Processing Solvent Enabling the Fabrication of Perovskite Solar Cells with Consecutive Doubleâ€Perovskite and Perovskite/Organic Semiconductor Bulk Heterojunction Layers. Solar Rrl, 2019, 3, 1800325.	5.8	6
27	Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution. Chinese Journal of Organic Chemistry, 2019, 39, 157.	1.3	2
28	Donor–acceptor photovoltaic polymers based on 1,4â€dithienylâ€2,5â€dialkoxybenzene with intramolecular noncovalent interactions. Journal of Polymer Science Part A, 2018, 56, 689-698.	2.3	8
29	UV-Cross-linkable Donor–Acceptor Polymers Bearing a Photostable Conjugated Backbone for Efficient and Stable Organic Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 35430-35440.	8.0	22
30	Side chain engineering on a small molecular semiconductor: Balance between solubility and performance by choosing proper positions for alkyl side chains. Organic Electronics, 2018, 61, 56-64.	2.6	15
31	Sulfanilic Acid Pending on a Graphene Scaffold: Novel, Efficient Synthesis and Much Enhanced Polymer Solar Cell Efficiency and Stability Using It as a Hole Extraction Layer. ACS Applied Materials & Interfaces, 2018, 10, 24679-24688.	8.0	12
32	Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells. Organic Electronics, 2018, 61, 113-118.	2.6	10
33	Mutual Composition Transformations Among 2D/3D Organolead Halide Perovskites and Mechanisms Behind. Solar Rrl, 2018, 2, 1800125.	5.8	17
34	Interconnecting semiconducting molecules with non-conjugated soft linkers: a way to improve film formation quality without sacrifice in charge mobility. RSC Advances, 2018, 8, 23546-23554.	3.6	4
35	High-performance flexible transparent conductive films achieved by cooperation between 1D copper nanowires and 2D graphene materials. Journal of Materials Chemistry C, 2017, 5, 5509-5516.	5.5	23
36	An acrylated fullerene derivative for efficient and thermally stable polymer solar cells. Tetrahedron Letters, 2017, 58, 2695-2699.	1.4	4

#	Article	IF	CITATIONS
37	Searching proper oligothiophene segment as centre donor moiety for isoindigo-based small molecular photovoltaic materials. Organic Electronics, 2017, 42, 93-101.	2.6	7
38	<i>J–V</i> and <i>C–V</i> investigation of the effect of small molecular fullerene and non-fullerene acceptors for CH ₃ NH ₃ PbI ₃ perovskite solar cell. Journal Physics D: Applied Physics, 2017, 50, 475303.	2.8	6
39	Long-term thermally stable organic solar cells based on cross-linkable donor–acceptor conjugated polymers. Journal of Materials Chemistry A, 2016, 4, 9286-9292.	10.3	22
40	Solution-processable, single-layer, blue organic light-emitting diodes employing dual emitting cores of hybridized local and charge-transfer units. Dyes and Pigments, 2016, 132, 94-102.	3.7	27
41	Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBM interface modifiers. Organic Electronics, 2016, 39, 1-9.	2.6	24
42	Donor–acceptor optoelectronic molecules based on hexa-peri-hexabenzocoronene and benzothiadiazole units: effectÂofÂdifferent combinations. Tetrahedron, 2016, 72, 4329-4336.	1.9	5
43	Diindole[3,2- b :4,5- b ′]pyrrole as a chromophore containing three successively fused pyrroles: synthesis, optoelectronic properties and π-functionalization. Tetrahedron, 2016, 72, 979-984.	1.9	14
44	Photovoltaic poly(rod-coil) polymers based on benzodithiophene-centred A–D–A type conjugated segments and dicarboxylate-linked alkyl non-conjugated segments. RSC Advances, 2016, 6, 23300-23309.	3.6	9
45	Benzodithiophene-Cored Small Optoelectronic Molecules: Influence of Extension Direction of Conjugated Segments. Chinese Journal of Organic Chemistry, 2016, 36, 1586.	1.3	1
46	Improving supercapacitor performance of alkylated graphene nanosheets via partial fluorination on their alkyl chains. RSC Advances, 2015, 5, 92159-92164.	3.6	3
47	Modification of a donor-acceptor photovoltaic polymer by integration of optoelectronic moieties into its side chains. Polymer, 2015, 59, 57-66.	3.8	6
48	Alkylated graphene nanosheets for supercapacitor electrodes: High performance and chain length effect. Carbon, 2015, 94, 114-119.	10.3	19
49	Shape-controllable and versatile synthesis of copper nanocrystals with amino acids as capping agents. Nanoscale, 2015, 7, 8811-8818.	5.6	51
50	Changing to Poly(rodâ€coil) Polymers: a Promising Way for an Optoelectronic Compound to Improve Its Film Formation. Chinese Journal of Chemistry, 2015, 33, 847-851.	4.9	7
51	Acceptor–acceptor conjugated copolymers based on perylenediimide and benzothiadiazole for allâ€polymer solar cells. Journal of Polymer Science Part A, 2014, 52, 1200-1215.	2.3	34
52	Influence of moiety sequence on the performance of small molecular photovoltaic materials. Journal of Materials Chemistry A, 2014, 2, 15396-15405.	10.3	33
53	A new class of organic photovoltaic materials: poly(rod-coil) polymers having alternative conjugated and non-conjugated segments. Chemical Communications, 2014, 50, 7720-7722.	4.1	16
54	Diketopyrrolopyrrole-based acceptor-acceptor conjugated polymers: The importance of comonomer on their charge transportation nature. Journal of Polymer Science Part A, 2014, 52, 2356-2366.	2.3	18

#	Article	IF	CITATIONS
55	Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning. Journal of Materials Chemistry A, 2014, 2, 8782-8789.	10.3	121
56	A Family of Donor–Acceptor Photovoltaic Polymers with Fused 4,7-Dithienyl-2,1,3-benzothiadiazole Units: Effect of Structural Fusion and Side Chains. Macromolecules, 2013, 46, 7920-7931.	4.8	58
57	Donorâ€Acceptor Oligomers and Polymers Composed of Benzothiadiazole and 3â€Hexylthiophene: Effect of Chain Length and Regioregularity. Chinese Journal of Chemistry, 2013, 31, 1367-1379.	4.9	15
58	Special Issue of "Organic Solids". Chinese Journal of Chemistry, 2013, 31, 1359-1359.	4.9	3
59	Novel photovoltaic polymers constructed from alternative donor and acceptor units having one mother structure. Polymer, 2013, 54, 2278-2284.	3.8	9
60	Synthesis and characterization of naphthalene diimide polymers based on donor-acceptor system for polymer solar cells. EXPRESS Polymer Letters, 2013, 7, 842-851.	2.1	18
61	Dendronized graphenes: remarkable dendrimer size effect on solvent dispersity and bulk electrical conductivity. Journal of Materials Chemistry, 2012, 22, 3082.	6.7	21
62	Progress in Polymeric Electron-Donating Materials for Organic Solar Cells. Chinese Journal of Organic Chemistry, 2012, 32, 266.	1.3	17
63	Construction of a long range p/n heterojunction with a pair of nanometre-wide continuous D/A phases. Nanoscale, 2011, 3, 3447.	5.6	25
64	Dendrimer/inorganic nanomaterial composites: Tailoring preparation, properties, functions, and applications of inorganic nanomaterials with dendritic architectures. Science China Chemistry, 2011, 54, 286-301.	8.2	16
65	Use of Sideâ€Chain Incompatibility for Tailoring Longâ€Range p/n Heterojunctions: Photoconductive Nanofibers Formed by Selfâ€Assembly of an Amphiphilic Donor–Acceptor Dyad Consisting of Oligothiophene and Perylenediimide. Chemistry - an Asian Journal, 2010, 5, 1566-1572.	3.3	49
66	Dendrimer Porphyrins and Phthalocyanines. Chemical Reviews, 2009, 109, 6047-6076.	47.7	293
67	Control of Molecular Structures and Photophysical Properties of Zinc(II) Porphyrin Dendrimers Using Bidentate Guests: Utilization of Flexible Dendrimer Structures as a Controllable Mold. Journal of Physical Chemistry A, 2008, 112, 6869-6876.	2.5	29
68	Amphiphilic Molecular Design as a Rational Strategy for Tailoring Bicontinuous Electron Donor and Acceptor Arrays: Photoconductive Liquid Crystalline Oligothiopheneâ^'C ₆₀ Dyads. Journal of the American Chemical Society, 2008, 130, 8886-8887.	13.7	185
69	Construction of Segregated Arrays of Multiple Donor and Acceptor Units Using a Dendritic Scaffold:Â Remarkable Dendrimer Effects on Photoinduced Charge Separation. Journal of the American Chemical Society, 2006, 128, 10527-10532.	13.7	112
70	Relationship between Incoherent Excitation Energy Migration Processes and Molecular Structures in Zinc(II) Porphyrin Dendrimers. Chemistry - A European Journal, 2006, 12, 7576-7584.	3.3	58
71	Cooperativity in Chiroptical Sensing with Dendritic Zinc Porphyrins. Journal of the American Chemical Society, 2005, 127, 7700-7702.	13.7	89
72	Photoluminescence Properties of Discrete Conjugated Wires Wrapped within Dendrimeric Envelopes:"Dendrimer Effects―onπ-Electronic Conjugation. Angewandte Chemie - International Edition, 2004, 43, 2943-2947.	13.8	68

#	Article	IF	CITATIONS
73	Photosensitized Hydrogen Evolution from Water Using Conjugated Polymers Wrapped in Dendrimeric Electrolytes. Journal of the American Chemical Society, 2004, 126, 12084-12089.	13.7	129
74	Copolymerization of butadiene and styrene with neodymium naphthenate based catalyst. European Polymer Journal, 2002, 38, 869-873.	5.4	20
75	Studies on Ringâ€Opening Polymerization of Chloromethyl Thiirane with Rare Earth Catalysts and Functional Resins Synthesized therewith. Chinese Journal of Chemistry, 2002, 20, 299-303.	4.9	2
76	Activity and mechanism of rare earth solid superacid for initiating ring-opening polymerization of chloromethyl thiirane. European Polymer Journal, 2001, 37, 1185-1190.	5.4	27
77	Kinetic model of gas phase polymerization of 1,3-butadiene catalyzed by supported rare earth coordination system. Science in China Series B: Chemistry, 2000, 43, 477-484.	0.8	1
78	Synthesis of Functional Resins from Poly(Chloromethyl thiirane) and Their Sorption Properties for Noble Metal. Journal of Macromolecular Science - Pure and Applied Chemistry, 1998, 35, 955-964.	2.2	2
79	Ring-Opening Polymerization of Chloromethyl Thiirane with AlCl3 and Nd(acac)3·3H2O-Al2Et3Cl3 Coordination Catalyst. Polymer Journal, 1997, 29, 1037-1039.	2.7	3
80	Ring-opening polymerization of chloromethylthiirane with SO42/TiO2/Nd3 as initiator. Macromolecular Rapid Communications, 1997, 18, 769-773.	3.9	9
81	Achieve Better Performance of Inverted Perovskite Solar Cells by Using the Fluorinated Polymer as the Electron Transporting Layer. ACS Applied Energy Materials, 0, , .	5.1	2