Rosanna Cardani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1848789/publications.pdf

Version: 2024-02-01

270111 286692 2,045 65 25 43 citations h-index g-index papers 67 67 67 2821 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A 14-Year Italian Experience in DM2 Genetic Testing: Frequency and Distribution of Normal and Premutated CNBP Alleles. Frontiers in Genetics, 2021, 12, 668094.	1.1	3
2	Soluble Receptor for Advanced Glycation End Products and Its Forms in COVID-19 Patients with and without Diabetes Mellitus: A Pilot Study on Their Role as Disease Biomarkers. Journal of Clinical Medicine, 2020, 9, 3785.	1.0	24
3	Covid-19-Associated Coagulopathy: Biomarkers of Thrombin Generation and Fibrinolysis Leading the Outcome. Journal of Clinical Medicine, 2020, 9, 3487.	1.0	63
4	Rare Disease: Cardiac Risk Assessment With MRI in Patients With Myotonic Dystrophy Type 1. Frontiers in Neurology, 2020, 11 , 192 .	1.1	9
5	TNNT2 Missplicing in Skeletal Muscle as a Cardiac Biomarker in Myotonic Dystrophy Type 1 but Not in Myotonic Dystrophy Type 2. Frontiers in Neurology, 2019, 10, 992.	1.1	8
6	Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 2019, 20, 1938.	1.8	37
7	Aberrant insulin receptor expression is associated with insulin resistance and skeletal muscle atrophy in myotonic dystrophies. PLoS ONE, 2019, 14, e0214254.	1.1	23
8	Aberrant regulation of epigenetic modifiers contributes to the pathogenesis in patients with selenoprotein N ⟨i⟩â€⟨ i⟩ related myopathies. Human Mutation, 2019, 40, 962-974.	1.1	13
9	Neuropsychological and Psychological Functioning Aspects in Myotonic Dystrophy Type 1 Patients in Italy. Frontiers in Neurology, 2018, 9, 751.	1.1	8
10	Incidence of amplification failure in DMPK allele due to allelic dropout event in a diagnostic laboratory. Clinica Chimica Acta, 2018, 484, 111-116.	0.5	3
11	The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the CIC-1 channel. Human Mutation, 2018, 39, 1273-1283.	1.1	15
12	High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2. Cell Death and Disease, 2018, 9, 729.	2.7	17
13	SCN4A as modifier gene in patients with myotonic dystrophy type 2. Scientific Reports, 2018, 8, 11058.	1.6	15
14	Flecainide-Induced Brugada Syndrome in a Patient With Skeletal Muscle Sodium Channelopathy: A Case Report With Critical Therapeutical Implications and Review of the Literature. Frontiers in Neurology, 2018, 9, 385.	1.1	17
15	Clinical Reasoning: A 35-year-old woman with hyperstartling, stiffness, and accidental falls. Neurology, 2017, 88, e38-e41.	1.5	1
16	Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurological Sciences, 2017, 38, 535-546.	0.9	40
17	Biomolecular diagnosis of myotonic dystrophy type 2: a challenging approach. Journal of Neurology, 2017, 264, 1705-1714.	1.8	7
18	Cardiac involvement in myotonic dystrophy: The role of troponins and N-terminal pro B-type natriuretic peptide. Atherosclerosis, 2017, 267, 110-115.	0.4	11

#	Article	IF	Citations
19	CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients. Molecular Therapy - Nucleic Acids, 2017, 9, 337-348.	2.3	57
20	Circulating Irisin Is Reduced in Male Patients with Type 1 and Type 2 Myotonic Dystrophies. Frontiers in Endocrinology, 2017, 8, 320.	1.5	14
21	Receptor and post-receptor abnormalities contribute to insulin resistance in myotonic dystrophy type 1 and type 2 skeletal muscle. PLoS ONE, 2017, 12, e0184987.	1.1	35
22	Validation of plasma microRNAs as biomarkers for myotonic dystrophy type 1. Scientific Reports, 2016, 6, 38174.	1.6	49
23	Characterization of sarcoplasmic reticulum Ca2+ ATPase pumps in muscle of patients with myotonic dystrophy and with hypothyroid myopathy. Neuromuscular Disorders, 2016, 26, 378-385.	0.3	6
24	Activation of the Pro-Oxidant PKCl²ll-p66Shc Signaling Pathway Contributes to Pericyte Dysfunction in Skeletal Muscles of Patients With Diabetes With Critical Limb Ischemia. Diabetes, 2016, 65, 3691-3704.	0.3	48
25	Drug resistant focal epilepsy in a patient with myotonic dystrophy type 2: casual or causal association?. Neurological Sciences, 2016, 37, 1867-1868.	0.9	1
26	High-sensitive cardiac troponin T (hs-cTnT) assay as serum biomarker to predict cardiac risk in myotonic dystrophy: A case-control study. Clinica Chimica Acta, 2016, 463, 122-128.	0.5	19
27	Workshop Report: consensus on biomarkers of cerebral involvement in myotonic dystrophy, 2–3 December 2014, Milan, Italy. Neuromuscular Disorders, 2015, 25, 813-823.	0.3	25
28	Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. Journal of Neuromuscular Diseases, 2015, 2, S59-S71.	1.1	50
29	Tibialis anterior muscle needle biopsy and sensitive biomolecular methods: a useful tool in myotonic dystrophy type 1. European Journal of Histochemistry, 2015, 59, 2562.	0.6	6
30	SCN4A mutation as modifying factor of Myotonic Dystrophy Type 2 phenotype. Neuromuscular Disorders, 2015, 25, 301-307.	0.3	39
31	Development and Validation of a New Molecular Diagnostic Assay for Detection of Myotonic Dystrophy Type 2. Genetic Testing and Molecular Biomarkers, 2015, 19, 703-709.	0.3	9
32	Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 594-606.	1.8	262
33	Genome Wide Identification of Aberrant Alternative Splicing Events in Myotonic Dystrophy Type 2. PLoS ONE, 2014, 9, e93983.	1.1	27
34	RNA Transcription and Maturation in Skeletal Muscle Cells are Similarly Impaired in Myotonic Dystrophy and Sarcopenia: The Ultrastructural Evidence. Frontiers in Aging Neuroscience, 2014, 6, 196.	1.7	11
35	Premature senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with p16 induction. European Journal of Histochemistry, 2014, 58, 2444.	0.6	27
36	Progression of muscle histopathology but not of spliceopathy in myotonic dystrophy type 2. Neuromuscular Disorders, 2014, 24, 1042-1053.	0.3	18

#	Article	IF	Citations
37	Plasma microRNAs as biomarkers for myotonic dystrophy type 1. Neuromuscular Disorders, 2014, 24, 509-515.	0.3	63
38	Human Myoblasts from Skeletal Muscle Biopsies: In Vitro Culture Preparations for Morphological and Cytochemical Analyses at Light and Electron Microscopy. Methods in Molecular Biology, 2013, 976, 67-79.	0.4	6
39	Muscleblind-like1 undergoes ectopic relocation in the nuclei of skeletal muscles in myotonic dystrophy and sarcopenia. European Journal of Histochemistry, 2013, 57, 15.	0.6	16
40	Overexpression of CUGBP1 in Skeletal Muscle from Adult Classic Myotonic Dystrophy Type 1 but Not from Myotonic Dystrophy Type 2. PLoS ONE, 2013, 8, e83777.	1.1	29
41	Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2. Journal of Neurology, 2012, 259, 2090-2099.	1.8	47
42	Nuclear ribonucleoprotein-containing foci increase in size in non-dividing cells from patients with myotonic dystrophy type 2. Histochemistry and Cell Biology, 2012, 138, 699-707.	0.8	17
43	Muscle biopsy. Journal of Neurology, 2012, 259, 601-610.	1.8	31
44	Deregulated MicroRNAs in Myotonic Dystrophy Type 2. PLoS ONE, 2012, 7, e39732.	1.1	81
45	Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders, 2011, 21, 81-88.	0.3	109
46	Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. European Journal of Histochemistry, 2011, 55, 26.	0.6	22
47	RNA processing is altered in skeletal muscle nuclei of patients affected by myotonic dystrophy. Histochemistry and Cell Biology, 2011, 135, 419-425.	0.8	18
48	Myotonic dystrophy type 2 and autoimmune chronic gastritis: an incidental association?. Neurological Sciences, 2011, 32, 1249-1250.	0.9	4
49	Routinely frozen biopsies of human skeletal muscle are suitable for morphological and immunocytochemical analyses at transmission electron microscopy. European Journal of Histochemistry, 2010, 54, 31.	0.6	13
50	Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathologica, 2010, 119, 465-479.	3.9	63
51	Proteome profile in Myotonic Dystrophy type 2 myotubes reveals dysfunction in protein processing and mitochondrial pathways. Neurobiology of Disease, 2010, 38, 273-280.	2.1	17
52	Ribonuclear inclusions as biomarker of myotonic dystrophy type 2, even in improperly frozen or defrozen skeletal muscle biopsies. European Journal of Histochemistry, 2009, 53, 13.	0.6	16
53	RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study. European Journal of Histochemistry, 2009, 53, 18.	0.6	28
54	Common microâ€RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB Journal, 2009, 23, 3335-3346.	0.2	235

#	Article	lF	CITATIONS
55	Ribonuclear inclusions and MBNL1 nuclear sequestration do not affect myoblast differentiation but alter gene splicing in myotonic dystrophy type 2. Neuromuscular Disorders, 2009, 19, 335-343.	0.3	25
56	A putative role of ribonuclear inclusions and MBNL1 in the impairment of gallbladder smooth muscle contractility with cholelithiasis in myotonic dystrophy type 1. Neuromuscular Disorders, 2008, 18, 641-645.	0.3	21
57	Proximal myotonic dystrophy mimicking progressive muscular atrophy. European Journal of Neurology, 2005, 12, 160-161.	1.7	5
58	Decreased density of beta1-adrenergic receptors in preneoplastic and neoplastic liver lesions of F344 rats. Histology and Histopathology, 2005, 20, 843-50.	0.5	2
59	Biomolecular identification of (CCTG)n mutation in myotonic dystrophy type 2 (DM2) by FISH on muscle biopsy. European Journal of Histochemistry, 2004, 48, 437.	0.6	56
60	Myotonic dystrophy type 2 and related myotonic disorders. Journal of Neurology, 2004, 251, 1173-1182.	1.8	72
61	Effect of glucose stress conditions in BL6T murine melanoma cells. Melanoma Research, 2004, 14, 345-351.	0.6	4
62	Immunohistochemical localization of \hat{l}^21 -adrenergic receptors in the liver of male and female F344 rat. Histochemistry and Cell Biology, 2001, 116, 441-445.	0.8	12
63	Age-Related Cell Proliferation and Apoptosis in the Kidney of Male Fischer 344 Rats With Observations on a Spontaneous Tubular Cell Adenoma. Toxicologic Pathology, 2000, 28, 802-806.	0.9	12
64	Influence of \hat{l}^2 -adrenergic antagonists on cell proliferation rates in the kidney of untreated and diethylnitrosamine-treated male F344 rats. Chemico-Biological Interactions, 1999, 118, 217-231.	1.7	2
65	CLINICAL ASPECTS AND MANAGEMENT OF MYOTONIC DYSTROPHIES. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 0, , 41-65.	0.0	O