
Fernando Calvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1848636/publications.pdf Version: 2024-02-01

FEDNANDO CALVO

#	Article	IF	CITATIONS
1	Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology, 2013, 15, 637-646.	4.6	1,088
2	Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization. Cell Reports, 2015, 13, 2456-2469.	2.9	190
3	Genomic and Transcriptomic Determinants of Therapy Resistance and Immune Landscape Evolution during Anti-EGFR Treatment in Colorectal Cancer. Cancer Cell, 2019, 36, 35-50.e9.	7.7	179
4	Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nature Communications, 2016, 7, 10305.	5.8	127
5	Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nature Communications, 2019, 10, 130.	5.8	116
6	Distinct Utilization of Effectors and Biological Outcomes Resulting from Site-Specific Ras Activation: Ras Functions in Lipid Rafts and Golgi Complex Are Dispensable for Proliferation and Transformation. Molecular and Cellular Biology, 2006, 26, 100-116.	1.1	110
7	Cdc42EP3/BORG2 and Septin Network Enables Mechano-transduction and the Emergence of Cancer-Associated Fibroblasts. Cell Reports, 2015, 13, 2699-2714.	2.9	106
8	Activation of H-Ras in the Endoplasmic Reticulum by the RasGRF Family Guanine Nucleotide Exchange Factors. Molecular and Cellular Biology, 2004, 24, 1516-1530.	1.1	87
9	RasCRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nature Cell Biology, 2011, 13, 819-826.	4.6	73
10	Cell communication networks in cancer invasion. Current Opinion in Cell Biology, 2011, 23, 621-629.	2.6	73
11	ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes. Journal of Cell Biology, 2010, 191, 967-979.	2.3	71
12	The Rasâ€ERK pathway: Understanding siteâ€specific signaling provides hope of new antiâ€ŧumor therapies. BioEssays, 2010, 32, 412-421.	1.2	70
13	Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination. Journal of the National Cancer Institute, 2016, 108, djv289.	3.0	53
14	Ras, an Actor on Many Stages: Posttranslational Modifications, Localization, and Site-Specified Events. Genes and Cancer, 2011, 2, 182-194.	0.6	49
15	The Borg family of Cdc42 effector proteins Cdc42EP1–5. Biochemical Society Transactions, 2016, 44, 1709-1716.	1.6	45
16	SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive behavior in endocrine-resistant ERα breast cancer. Nature Communications, 2019, 10, 2115.	5.8	42
17	Factors Secreted by Cancer-Associated Fibroblasts that Sustain Cancer Stem Properties in Head and Neck Squamous Carcinoma Cells as Potential Therapeutic Targets. Cancers, 2018, 10, 334.	1.7	41
18	CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion. Journal of Cell Biology, 2020, 219, .	2.3	40

Fernando Calvo

#	Article	IF	CITATIONS
19	An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Reports, 2019, 26, 3100-3115.e7.	2.9	36
20	c-Myc Inhibits Ras-Mediated Differentiation of Pheochromocytoma Cells by Blocking c-Jun Up-Regulation. Molecular Cancer Research, 2008, 6, 325-339.	1.5	30
21	Regulation of mechanotransduction: Emerging roles for septins. Cytoskeleton, 2019, 76, 115-122.	1.0	29
22	Cdc42 regulates Cdc42EP3 function in cancer-associated fibroblasts. Small GTPases, 2017, 8, 49-57.	0.7	28
23	Transcriptomal profiling of site-specific Ras signals. Cellular Signalling, 2007, 19, 2264-2276.	1.7	26
24	Lysophosphatidic acid rescues RhoA activation and phosphoinositides levels in astrocytes exposed to ethanol. Journal of Neurochemistry, 2007, 102, 1044-1052.	2.1	22
25	Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. Journal of Clinical Investigation, 2022, 132, .	3.9	21
26	A mouse SWATH-MS reference spectral library enables deconvolution of species-specific proteomic alterations in human tumour xenografts. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	16
27	TGFβ-mediated suppression of CD248 in non-cancer cells via canonical Smad-dependent signaling pathways is uncoupled in cancer cells. BMC Cancer, 2014, 14, 113.	1.1	13
28	Structural and Spatial Determinants Regulating TC21 Activation by RasGRF Family Nucleotide Exchange Factors. Molecular Biology of the Cell, 2009, 20, 4289-4302.	0.9	12
29	Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases, 2020, 11, 371-383.	0.7	9
30	Analysis of Breast Cancer Cell Invasion Using an Organotypic Culture System. Methods in Molecular Biology, 2017, 1612, 199-212.	0.4	8
31	Tumor Microenvironment: Unleashing Metalloproteinases to Induce a CAF Phenotype. Current Biology, 2014, 24, R1009-R1011.	1.8	7
32	Ras and Rho GTPases on the move. Bioarchitecture, 2011, 1, 200-204.	1.5	5
33	Isolation and Immortalization of Fibroblasts from Different Tumoral Stages. Bio-protocol, 2014, 4, .	0.2	4
34	ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes. Journal of Cell Biology, 2011, 192, 201-201.	2.3	0
35	TGFß-Mediated Suppression of CD248 in Non-Cancer Cells via Canonical SMAD-Dependent Signaling Pathways is Uncoupled in Cancer Cells. , 2014, , 1-26.		Ο