Mathieu Kociak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1848596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
2	Design and implementation of a device based on an off-axis parabolic mirror to perform luminescence experiments in a scanning tunneling microscope. Review of Scientific Instruments, 2022, 93, 043704.	0.6	2
3	Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities. Nano Letters, 2022, 22, 319-327.	4.5	15
4	Nanoscale Mapping of Light Emission in Nanospade-Based InGaAs Quantum Wells Integrated on Si(100): Implications for Dual Light-Emitting Devices. ACS Applied Nano Materials, 2022, 5, 5508-5515.	2.4	0
5	Event-based hyperspectral EELS: towards nanosecond temporal resolution. Ultramicroscopy, 2022, 239, 113539.	0.8	13
6	Electronic properties of black phosphorus using monochromated low-loss EELS. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 115002.	1.7	3
7	Bridging nano-optics and condensed matter formalisms in a unified description of inelastic scattering of relativistic electron beams. SciPost Physics, 2021, 10, .	1.5	6
8	Three-dimensional vectorial imaging of surface phonon polaritons. Science, 2021, 371, 1364-1367.	6.0	39
9	Optical polarization analogue in free electron beams. Nature Physics, 2021, 17, 598-603.	6.5	15
10	Can Copper Nanostructures Sustain High-Quality Plasmons?. Nano Letters, 2021, 21, 2444-2452.	4.5	43
11	Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science, 2021, 372, 1181-1186.	6.0	56
12	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Microscopy and Microanalysis, 2021, 27, 320-321.	0.2	0
13	Novel insights in optical properties of nanomaterials allowed by high resolution EELS and cathodoluminescence. Microscopy and Microanalysis, 2021, 27, 1466-1468.	0.2	0
14	Unveiling nanoscale optical and structural properties of TMD monolayers using combined electron spectroscopies. Microscopy and Microanalysis, 2021, 27, 124-127.	0.2	0
15	Combining in situ micro-photoluminescence and cathodoluminescence to understand defects photophysics in nanodiamonds. Microscopy and Microanalysis, 2021, 27, 2104-2106.	0.2	0
16	Time-resolved cathodoluminescence in an ultrafast transmission electron microscope. Applied Physics Letters, 2021, 119, .	1.5	15
17	Nanoscale Modification of WS ₂ Trion Emission by Its Local Electromagnetic Environment. Nano Letters, 2021, 21, 10178-10185.	4.5	23
18	Local Optical Chirality Induced by Near-Field Mode Interference in Achiral Plasmonic Metamolecules. Nano Letters, 2020, 20, 509-516.	4.5	53

#	Article	IF	CITATIONS
19	Spatial and spectral dynamics in STEM hyperspectral imaging using random scan patterns. Ultramicroscopy, 2020, 212, 112912.	0.8	17
20	Time-resolved Cathodoluminescence in a Transmission Electron Microscope Applied to NV Centers in Diamond. Microscopy and Microanalysis, 2020, 26, 2022-2023.	0.2	4
21	Visualizing Strong Light-matter Interactions Using Fast Electrons. Microscopy and Microanalysis, 2020, 26, 3182-3184.	0.2	0
22	Combining Highly Monochromatized EELS with CL for Probing Elementary Excitations and Their Interaction. Microscopy and Microanalysis, 2020, 26, 1502-1504.	0.2	0
23	Electron Energy-loss Spectroscopy Using MerlinEM - Medipix3 Detector. Microscopy and Microanalysis, 2020, 26, 1940-1942.	0.2	7
24	Spectroscopies and Electron Microscopies Unravel the Origin of the First Colour Photographs. Angewandte Chemie - International Edition, 2020, 59, 9113-9119.	7.2	4
25	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Letters, 2020, 20, 2973-2979.	4.5	36
26	Probing the Radiative Electromagnetic Local Density of States in Nanostructures with a Scanning Tunneling Microscope. ACS Photonics, 2020, 7, 1280-1289.	3.2	6
27	Toroidal Moments Probed by Electron Beams. Journal of Physics: Conference Series, 2020, 1461, 012174.	0.3	1
28	Probing plasmonic excitation mechanisms and far-field radiation of single-crystalline gold tapers with electrons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190599.	1.6	2
29	Tracking Quantum Effects at the Nanometer Scale with EELS and Cathodoluminescence. Microscopy and Microanalysis, 2019, 25, 952-953.	0.2	0
30	Dynamic Random Scan Approach of Spectrum Imaging for Temporal Evolution of Spectroscopic Signals. Microscopy and Microanalysis, 2019, 25, 162-163.	0.2	1
31	Towards Plasmon-Exciton Hybridization at the Nanoscale using STEM EELS. Microscopy and Microanalysis, 2019, 25, 624-625.	0.2	0
32	EELS in STEM: the "Swiss Army Knife―of Spectroscopy. Microscopy and Microanalysis, 2019, 25, 620-621.	0.2	0
33	Luminescence from Isolated Tb-based Metallacrown Molecular Complexes on h-BN. Microscopy and Microanalysis, 2019, 25, 604-605.	0.2	3
34	Electron-beam spectroscopy for nanophotonics. Nature Materials, 2019, 18, 1158-1171.	13.3	193
35	Solvothermally-synthesized tin-doped indium oxide plasmonic nanocrystals spray-deposited onto glass as near-infrared electrochromic films. Solar Energy Materials and Solar Cells, 2019, 200, 110014.	3.0	12
36	Visualizing Spatial Variations of Plasmon–Exciton Polaritons at the Nanoscale Using Electron Microscopy. Nano Letters, 2019, 19, 8171-8181.	4.5	77

#	Article	IF	CITATIONS
37	Plasmonic Oligomers with Tunable Conductive Nanojunctions. Journal of Physical Chemistry Letters, 2019, 10, 7093-7099.	2.1	12
38	Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. ACS Photonics, 2019, 6, 2509-2516.	3.2	4
39	High brightness ultrafast transmission electron microscope based on a laser-driven cold-field emission source: principle and applications. Advances in Physics: X, 2019, 4, 1660214.	1.5	10
40	Radiation of Dynamic Toroidal Moments. ACS Photonics, 2019, 6, 467-474.	3.2	22
41	Incorporation of Europium into GaN Nanowires by Ion Implantation. Journal of Physical Chemistry C, 2019, 123, 11874-11887.	1.5	12
42	Probing Functional Oxides by Ultra-High Resolution EELS under Variable-Temperature Stimuli. Microscopy and Microanalysis, 2019, 25, 21-22.	0.2	25
43	Emergence of point defect states in a plasmonic crystal. Physical Review B, 2019, 100, .	1.1	5
44	Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Ultramicroscopy, 2019, 203, 44-51.	0.8	36
45	Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nature Physics, 2019, 15, 275-280.	6.5	140
46	Probing quantum optical excitations with fast electrons. Optica, 2019, 6, 1524.	4.8	89
47	Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source. Ultramicroscopy, 2018, 186, 128-138.	0.8	92
48	Self-hybridization within non-Hermitian localized plasmonic systems. Nature Physics, 2018, 14, 360-364.	6.5	28
49	How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?. ACS Photonics, 2018, 5, 861-866.	3.2	30
50	Probing Plasmon-NV ⁰ Coupling at the Nanometer Scale with Photons and Fast Electrons. ACS Photonics, 2018, 5, 324-328.	3.2	24
51	Monolayer and thin <i>h</i> –BN as substrates for electron spectro-microscopy analysis of plasmonic nanoparticles. Applied Physics Letters, 2018, 113, .	1.5	9
52	Optical gap and optically active intragap defects in cubic BN. Physical Review B, 2018, 98, .	1.1	22
53	Optimizing the Nion STEM for In-Situ Experiments. Microscopy and Microanalysis, 2018, 24, 1132-1133.	0.2	6
54	Localized Plasmonic Resonances of Prolate Nanoparticles in a Symmetric Environment: Experimental Verification of the Accuracy of Numerical and Analytical Models. Physical Review Applied, 2018, 9, .	1.5	14

#	Article	IF	CITATIONS
55	New Directions Toward Nanophysics Experiments in STEM. Microscopy and Microanalysis, 2018, 24, 434-435.	0.2	3
56	Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nature Communications, 2017, 8, 14999.	5.8	95
57	Plasmonic Breathing and Edge Modes in Aluminum Nanotriangles. ACS Photonics, 2017, 4, 1257-1263.	3.2	76
58	Quantum Nanooptics in the Electron Microscope. Advances in Imaging and Electron Physics, 2017, 199, 185-235.	0.1	2
59	Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy, 2017, 176, 112-131.	0.8	97
60	A spectromicroscope for nanophysics. Ultramicroscopy, 2017, 180, 81-92.	0.8	10
61	Publisher's Note. Ultramicroscopy, 2017, 174, 50.	0.8	21
62	Stable and Flexible Side-Entry Stage for Nion STEMs. Microscopy and Microanalysis, 2017, 23, 54-55.	0.2	2
63	Optical Spectroscopy at High Spatial Resolution with Fast Electrons. Microscopy and Microanalysis, 2017, 23, 1528-1529.	0.2	0
64	Nanocross: A Highly Tunable Plasmonic System. Journal of Physical Chemistry C, 2017, 121, 16521-16527.	1.5	10
65	Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes. Physical Review X, 2017, 7, .	2.8	36
66	Interaction between Relativistic Electrons and Mesoscopic Plasmonic Tapers. Microscopy and Microanalysis, 2017, 23, 1534-1535.	0.2	0
67	Bi-orthogonality allows observation of self-hybridization in plasmonic system. , 2017, , .		Ο
68	Imaging of the second-harmonic response of spatially-oriented individual ion-shaped nanoparticles. , 2016, , .		0
69	Structure and Luminescence in Long Persistence Eu, Dy, and B Codoped Strontium Aluminate Phosphors: The Boron Effect. Journal of the American Ceramic Society, 2016, 99, 2175-2180.	1.9	26
70	Fabrication of Ion-Shaped Anisotropic Nanoparticles and their Orientational Imaging by Second-Harmonic Generation Microscopy. Scientific Reports, 2016, 6, 37469.	1.6	15
71	Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. Nanoscale, 2016, 8, 11588-11594.	2.8	29
72	InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnology, 2016, 27, 195704.	1.3	19

#	Article	IF	CITATIONS
73	Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires. Physical Review B, 2016, 93, .	1.1	17
74	Extinction and Scattering Properties of High-Order Surface Plasmon Modes in Silver Nanoparticles Probed by Combined Spatially Resolved Electron Energy Loss Spectroscopy and Cathodoluminescence. ACS Photonics, 2016, 3, 1654-1661.	3.2	42
75	Lifetime Measurements Well below the Optical Diffraction Limit. ACS Photonics, 2016, 3, 1157-1163.	3.2	37
76	Bright UV Single Photon Emission at Point Defects in <i>h</i> -BN. Nano Letters, 2016, 16, 4317-4321.	4.5	321
77	Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy, 2016, 162, A1-A24.	0.8	102
78	Fabrication and Second-harmonic Generation Imaging of Oriented Ion-shaped Nanoparticles. , 2016, , .		0
79	Quantum and Time-Resolved Nano-Optics using Auto-Correlated Cathodoluminescence in a STEM. Microscopy and Microanalysis, 2015, 21, 1253-1254.	0.2	0
80	Advances in Scanning Transmission Electron Microscope Cathodoluminescence. Microscopy and Microanalysis, 2015, 21, 1687-1688.	0.2	2
81	Role of compositional fluctuations and their suppression on the strain and luminescence of InGaN alloys. Journal of Applied Physics, 2015, 117, 055705.	1.1	20
82	Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements. Nano Letters, 2015, 15, 1229-1237.	4.5	143
83	Photon Bunching in Cathodoluminescence. Physical Review Letters, 2015, 114, 197401.	2.9	97
84	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters, 2015, 15, 5427-5437.	4.5	122
85	Quantum control of free electrons. Nature, 2015, 521, 166-167.	13.7	6
86	Link between Cathodoluminescence and Electron Energy Loss Spectroscopy and the Radiative and Full Electromagnetic Local Density of States. ACS Photonics, 2015, 2, 1619-1627.	3.2	119
87	De la simple hélice aux nanostructures tubulaires. , 2015, , 34-38.	0.1	Ο
88	A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures. Applied Physics Letters, 2014, 105, 143106.	1.5	11
89	Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide. Journal of Applied Physics, 2014, 115, 053504.	1.1	27
90	Experimental and Theoretical Atomic-Resolved EELS Studies on Nitrogen Doped Single-Walled Carbon Nanotubes. Microscopy and Microanalysis, 2014, 20, 76-77.	0.2	0

#	Article	IF	CITATIONS
91	Ballistic- and quantum-conductor carbon nanotubes: A reference experiment put to the test. Physical Review B, 2014, 90, .	1.1	9
92	Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique, 2014, 15, 158-175.	0.3	43
93	Mapping plasmons at the nanometer scale in an electron microscope. Chemical Society Reviews, 2014, 43, 3865.	18.7	189
94	Nanometric Resolved Luminescence in h-BN Flakes: Excitons and Stacking Order. ACS Photonics, 2014, 1, 857-862.	3.2	80
95	High-Resolution Imaging and Spectroscopy of Multipolar Plasmonic Resonances in Aluminum Nanoantennas. Nano Letters, 2014, 14, 5517-5523.	4.5	101
96	Atomic Configuration of Nitrogen-Doped Single-Walled Carbon Nanotubes. Nano Letters, 2014, 14, 5509-5516.	4.5	104
97	From Quantum Confinement to Quantum Electrodynamics using nanoCathodoluminescence in a STEM. Microscopy and Microanalysis, 2014, 20, 572-573.	0.2	0
98	Nanometric Resolved Cathodoluminescence on Few-Layer h-BN Flakes. Microscopy and Microanalysis, 2014, 20, 1746-1747.	0.2	0
99	Quantum nano optics of defect centers in diamond and h-BN with nano-cathodoluminescence. , 2014, , .		0
100	Measurement of the autocorrelation function of a cathodoluminescence signal: characteristics and applications in nanosecond time resolved and nanometer spatially resolved experiment. , 2014, , .		0
101	Accessing the optical properties of single nanoobjects at the nanometer scale through fast electron based spectroscopies. , 2014, , .		Ο
102	Evidence of random Surface Plasmon modes in fractal metal films. , 2014, , .		1
103	Cathodoluminescence in a Scanning Transmission Electron Microscope: A Nanometer-Scale Counterpart of Photoluminescence for the Study of II–VI Quantum Dots. Journal of Physical Chemistry Letters, 2013, 4, 4090-4094.	2.1	45
104	Spatial modulation of above-the-gap cathodoluminescence in InP nanowires. Journal of Physics Condensed Matter, 2013, 25, 505303.	0.7	2
105	Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films. Physical Review B, 2013, 88, .	1.1	48
106	1D-confinement of polyiodides inside single-wall carbon nanotubes. Carbon, 2013, 52, 100-108.	5.4	19
107	Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Physical Review Letters, 2013, 110, 153604.	2.9	88
108	Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence. Nanotechnology, 2013, 24, 305703.	1.3	24

#	Article	IF	CITATIONS
109	Structural and optical properties of Al <i>_x</i> Ga _{1–<i>x</i>} N nanowires. Physica Status Solidi - Rapid Research Letters, 2013, 7, 868-873.	1.2	32
110	Spatially and spectrally resolved cathodoluminescence with fast electrons: A tool for background subtraction in luminescence intensity secondâ€order correlation measurements applied to subwavelength inhomogeneous diamond nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2060-2065.	0.8	17
111	In situ break-junction sample holder for transmission electron microscopy. EPJ Applied Physics, 2013, 64, 31001.	0.3	Ο
112	Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires. Nanotechnology, 2012, 23, 455205.	1.3	31
113	Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells. Applied Physics Express, 2012, 5, 014101.	1.1	58
114	Nanoscale mapping of plasmons, photons, and excitons. MRS Bulletin, 2012, 37, 39-46.	1.7	17
115	Visualizing the morphology of hybrid nanoparticles at the nanometer level using STEM-EELS spectro-microscopy. Microscopy and Microanalysis, 2012, 18, 1602-1603.	0.2	0
116	Ultralocal Modification of Surface Plasmons Properties in Silver Nanocubes. Nano Letters, 2012, 12, 1288-1294.	4.5	99
117	Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology, 2012, 23, 135703.	1.3	67
118	Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study. Nano Letters, 2012, 12, 4172-4180.	4.5	139
119	Nanoscale Chemical and Structural Characterization of Transient Metallic Nanowires using Aberration-Corrected STEM-EELS. Nano Letters, 2012, 12, 2732-2739.	4.5	10
120	Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes. Physical Review B, 2012, 85, .	1.1	82
121	Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV ⁰ emission properties. Nanotechnology, 2012, 23, 175702.	1.3	53
122	Surface Plasmon Mapping of Dumbbell-Shaped Gold Nanorods: The Effect of Silver Coating. Langmuir, 2012, 28, 9063-9070.	1.6	32
123	Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure. Nano Letters, 2011, 11, 568-573.	4.5	165
124	Spatially Resolved EELS: The Spectrum-Imaging Technique and Its Applications. , 2011, , 163-205.		12
125	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. EPJ Applied Physics, 2011, 54, 33512.	0.3	34
126	Recent advances in (S)TEM and related spectroscopies: a tribute to C. Colliex. EPJ Applied Physics, 2011, 54, 33501.	0.3	1

#	ARTICLE	IF	CITATIONS
127	Chemical Imaging at Atomic Resolution as a Technique To Refine the Local Structure of Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 868-872.	7.2	27
128	Nano-optic of metamaterials by spatially resolved Electron Energy Loss Spectroscopy. , 2010, , .		0
129	GaN/AlN quantum disc singleâ€nanowire photodetectors. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1323-1327.	0.8	10
130	Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 2010, 105, 255501.	2.9	79
131	Two-Dimensional Quasistatic Stationary Short Range Surface Plasmons in Flat Nanoprisms. Nano Letters, 2010, 10, 902-907.	4.5	103
132	Ultraviolet Photodetector Based on GaN/AlN Quantum Disks in a Single Nanowire. Nano Letters, 2010, 10, 2939-2943.	4.5	155
133	Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields. Nano Letters, 2010, 10, 1859-1863.	4.5	184
134	Photocurrent Spectroscopy and Luminescence of GaN/AlN Quantum Discs in GaN Nanowires. , 2010, , .		1
135	Mapping Electron Excitations in the Visible-UV Range Using Sub-nm Resolved STEM-EELS Spectrum Imaging. , 2009, , .		0
136	Probing non-dipole allowed excitations in highly correlated materials with nanoscale resolution. Ultramicroscopy, 2009, 109, 1333-1337.	0.8	14
137	Study by EELS of helium bubbles in a martensitic steel. Journal of Nuclear Materials, 2009, 393, 102-107.	1.3	95
138	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	6.6	520
139	Multi-dimensional and multi-signal approaches in scanning transmission electron microscopes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3845-3858.	1.6	19
140	TEM Nanolaboratory. Imaging & Microscopy, 2008, 10, 26-27.	0.1	2
141	Probing Physical Properties of Confined Fluids within Individual Nanobubbles. Physical Review Letters, 2008, 100, 035301.	2.9	52
142	Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy. Physical Review Letters, 2008, 100, 106804.	2.9	300
143	Electron energy-gain spectroscopy. New Journal of Physics, 2008, 10, 073035.	1.2	112

144 Mapping Surface Plasmons on a Single Metallic Nanoparticle. , 2008, , .

2

#	Article	IF	CITATIONS
145	Electronic and Mechanical Coupling of Carbon Nanotubes: A Tunable Resonant Raman Study of Systems with Known Structures. Physical Review Letters, 2008, 101, 197403.	2.9	24
146	Optical Gap Measurements on Individual Boron Nitride Nanotubes by Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2008, 14, 274-282.	0.2	14
147	Atomic-Resolution STEM at 60kV Primary Voltage. Microscopy and Microanalysis, 2008, 14, 136-137.	0.2	2
148	Combining electronic and optical spectroscopy at the nanometer scale in a STEM. , 2008, , 351-352.		0
149	EELS mapping of surface plasmons in star-shaped gold nanoparticles: morphological behaviour of optical properties from star to sphere. , 2008, , 409-410.		0
150	Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies. Physical Review B, 2007, 76, .	1.1	37
151	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. Microscopy and Microanalysis, 2007, 13, .	0.2	10
152	High-angular-resolution electron energy loss spectroscopy of hexagonal boron nitride. Applied Physics Letters, 2007, 90, 204105.	1.5	39
153	Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 2007, 3, 348-353.	6.5	908
154	CVD growth of carbon nanotubes at very low pressure of acetylene. Applied Physics A: Materials Science and Processing, 2007, 88, 687-691.	1.1	38
155	Towards correlating Raman excitation profile and electron diffraction of the same single carbon nanotube. Annales De Physique, 2007, 32, 131-134.	0.2	0
156	Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Physical Review B, 2006, 73, .	1.1	85
157	Determination of chiral indices of individual single- and double-walled boron nitride nanotubes by electron diffraction. Applied Physics Letters, 2006, 89, 073104.	1.5	55
158	Momentum-Resolved EELS Measurements of Hexagonal Boron Nitride. Microscopy and Microanalysis, 2006, 12, 1188-1189.	0.2	3
159	Assignment of Chiral Indices of Boron Nitride Nanotubes by Electron Diffraction. Microscopy and Microanalysis, 2006, 12, 578-579.	0.2	3
160	Optical Gap Measurements of Boron Nitride Nanotubes by EELS. Microscopy and Microanalysis, 2006, 12, 1166-1167.	0.2	3
161	Scanning and transmission electron microscope images of a suspended single-walled carbon nanotube. Applied Physics Letters, 2006, 89, 013120.	1.5	11
162	Alteration of superconductivity and radial breathing modes in suspended ropes of carbon nanotubes by organic polymer coatings. Physical Review B, 2006, 74, .	1.1	10

#	Article	IF	CITATIONS
163	Proximity induced and intrinsic superconductivity in long and short molecules. Les Houches Summer School Proceedings, 2005, 81, 593-595.	0.2	0
164	Probing surface plasmons on individual nano-objects by near-field electron energy loss spectroscopy. , 2005, , .		2
165	Electron Energy Loss Spectroscopy Measurement of the Optical Gaps on Individual Boron Nitride Single-Walled and Multiwalled Nanotubes. Physical Review Letters, 2005, 95, 127601.	2.9	190
166	Superconductivity in Long and Short Molecules. AIP Conference Proceedings, 2004, , .	0.3	0
167	Stretching of carbon-carbon bonds in a0.7nmdiameter carbon nanotube studied by electron diffraction. Physical Review B, 2004, 70, .	1.1	24
168	Superconductivity in ropes of carbon nanotubes. Solid State Communications, 2004, 131, 615-623.	0.9	21
169	Contact induced magnetism in carbon nanotubes. Journal of Physics Condensed Matter, 2004, 16, L155-L161.	0.7	95
170	EELS measurements in single wall Boron Nitride nanotubes. AIP Conference Proceedings, 2004, , .	0.3	3
171	Quantum Coherent Transport and Superconductivity in Carbon Nanotubes. , 2004, , 219-238.		0
172	How accurate can the determination of chiral indices of carbon nanotubes be?. European Physical Journal B, 2003, 32, 457-469.	0.6	65
173	Simulations of electron energy-loss spectra of an electron passing near a locally anisotropic nanotube. Journal of Electron Spectroscopy and Related Phenomena, 2003, 129, 293-298.	0.8	10
174	Superconductivity in ropes of single-walled carbon nanotubes. Physica B: Condensed Matter, 2003, 329-333, 1321-1322.	1.3	11
175	Electrodynamic response of carbon nanostructures in electron-energy-loss spectroscopy. , 2003, 5219, 1.		1
176	Quantum transport through carbon nanotubes: Proximity-induced and intrinsic superconductivity. Physical Review B, 2003, 68, .	1.1	89
177	Shot noise in carbon nanotubes. , 2003, , .		3
178	Near-field electron energy loss of nanotube bundles and surface plasmons coupling in nanocylinders: a continuum dielectric approach. , 2003, 5219, 16.		0
179	Quantum coherent transport: From mesoscopic circuits to molecular wires. , 2003, , 117-148.		0
180	Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube. Physical Review B, 2002, 66, .	1.1	53

#	Article	IF	CITATIONS
181	Intrinsic Superconductivity in Ropes of Carbon Nanotubes. AIP Conference Proceedings, 2002, , .	0.3	2
182	Linking Chiral Indices and Transport Properties of Double-Walled Carbon Nanotubes. Physical Review Letters, 2002, 89, 155501.	2.9	164
183	Surface Plasmon Coupling in Nanotubes. AlP Conference Proceedings, 2002, , .	0.3	1
184	Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: From multiwalled to single-walled nanotubes. Physical Review B, 2002, 66, .	1.1	129
185	Very low shot noise in carbon nanotubes. European Physical Journal B, 2002, 28, 217-222.	0.6	42
186	Proximity Induced and Intrinsic Superconductivity in Carbon Nanotubes. , 2002, , 103-116.		0
187	Superconductivity in Ropes of Single-Walled Carbon Nanotubes. Physical Review Letters, 2001, 86, 2416-2419.	2.9	376
188	Proximity-Induced Superconductivity in DNA. Science, 2001, 291, 280-282.	6.0	648
189	Superconductivity in molecular wires. Physics-Uspekhi, 2001, 44, 69-71.	0.8	Ο
190	Electron energy-loss spectroscopy on individual nanotubes. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 209-217.	0.8	36
191	Excitation of plasmons of anisotropic nanostructures by nearby electrons. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 219-224.	0.8	5
192	Experimental Evidence of Surface-Plasmon Coupling in Anisotropic Hollow Nanoparticles. Physical Review Letters, 2001, 87, 075501.	2.9	70
193	Spatially Resolved EELS on Carbon-Based Nanostructures. , 2001, , 201-232.		5
194	A Near Field EEL Spectroscopy study of surface modes in nanotubes and onions from various layered materials. AIP Conference Proceedings, 2000, , .	0.3	0
195	Superconductivity and normal state resistance of carbon nanotubes. AIP Conference Proceedings, 2000, , .	0.3	Ο
196	ELECTRON ENERGY LOSS SPECTROSCOPY AND ANNULAR DARK FIELD IMAGING AT A NANOMETER RESOLUTION IN A SCANNING TRANSMISSION ELECTRON MICROSCOPE. Surface Review and Letters, 2000, 07, 475-494.	0.5	11
197	Acoustoelectric Effects in Carbon Nanotubes. Physical Review Letters, 2000, 85, 2829-2832.	2.9	128
198	Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy. Physical Review B, 2000, 61, 13936-13944.	1.1	110

#	Article	IF	CITATIONS
199	Valence Electron EELS Spectroscopy on Nanoparticle Surfaces. Microscopy and Microanalysis, 1999, 5, 668-669.	0.2	0
200	Proximity-induced superconductivity in carbon nanotubes. Comptes Rendus De L'Academie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie, 1999, 327, 933-943.	0.1	2
201	Supercurrents Through Single-Walled Carbon Nanotubes. Science, 1999, 284, 1508-1511.	6.0	407