Mei-li Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1848460/publications.pdf

Version: 2024-02-01

MELLI OL

#	Article	IF	CITATIONS
1	Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Materials Science and Engineering C, 2020, 109, 110497.	7.3	47
2	One-step hydrothermal synthesis of carbonated hydroxyapatite porous microspheres with a large and uniform size regulated by <scp>l</scp> -glutamic acid. CrystEngComm, 2016, 18, 5876-5884.	2.6	26
3	Hydroxyapatite Fibers: A Review of Synthesis Methods. Jom, 2017, 69, 1354-1360.	1.9	21
4	Improved time-dependent seismic fragility estimates for deteriorating RC bridge substructures exposed to chloride attack. Advances in Structural Engineering, 2021, 24, 437-452.	2.4	21
5	Electrocatalytic oxygen reduction by a Co/Co ₃ O ₄ @N-doped carbon composite material derived from the pyrolysis of ZIF-67/poplar flowers. RSC Advances, 2021, 11, 2693-2700.	3.6	21
6	Facile hydrothermal synthesis of antibacterial multi-layered hydroxyapatite nanostructures with superior flexibility. CrystEngComm, 2018, 20, 1304-1312.	2.6	15
7	Nanosheet-assembled carbonated hydroxyapatite microspheres prepared by an EDTA-assisted hydrothermal homogeneous precipitation route. CrystEngComm, 2020, 22, 2884-2888.	2.6	11
8	Investigation on [OH ^{â^'}]-responsive systems for construction of one-dimensional hydroxyapatite <i>via</i> a solvothermal method. New Journal of Chemistry, 2021, 45, 358-364.	2.8	11
9	Investigation of EDTA concentration on the size of carbonated flowerlike hydroxyapatite microspheres. Royal Society Open Science, 2021, 8, 202148.	2.4	9
10	Rapid Hydrothermal Synthesis of Submillimeter Ultralong Flexible Hydroxyapatite Fiber Using Different pH Regulators. Acta Metallurgica Sinica (English Letters), 2016, 29, 609-613.	2.9	8
11	<i>In situ</i> visualization of the superior nanomechanical flexibility of individual hydroxyapatite nanobelts. CrystEngComm, 2018, 20, 1031-1036.	2.6	7
12	Controlled Synthesis of Hydroxyapatite Nanomaterials Regulated by Different Phosphorus Sources. Crystals, 2020, 10, 678.	2.2	7
13	Co ₂ O ₃ /Co ₂ N _{0.67} nanoparticles encased in honeycomb-like N, P, O-codoped carbon framework derived from corncob as efficient ORR electrocatalysts. RSC Advances, 2021, 12, 207-215.	3.6	7
14	Optimization of the Mechanical Properties and the Cytocompatibility for the PMMA Nanocomposites Reinforced with the Hydroxyapatite Nanofibers and the Magnesium Phosphate Nanosheets. Materials, 2021, 14, 5893.	2.9	6
15	Flexible hydroxyapatite fiber precipitated by urea through a hydrothermal route. Surface Innovations, 2017, 5, 75-81.	2.3	5
16	Activating bimetallic ZIF-derived polymers using facile steam-etching for the ORR. New Journal of Chemistry, 2022, 46, 13629-13635.	2.8	3
17	Hydroxyapatite nanomaterials with tailored length regulated by different fatty acids. Micro and Nano Letters, 2021, 16, 649-655.	1.3	2
18	Facile and simple synthesis of silverâ€doped hydroxyapatite porous microspheres with good sphericity. Micro and Nano Letters, 2021, 16, 425-431.	1.3	1

Mei-li Qi

#	Article	IF	CITATIONS
19	In Situ TEM Investigation on the Thermal Stability of Hydroxyapatite Nanobelts. Microscopy and Microanalysis, 2020, 26, 1426-1426.	0.4	0
20	In Situ TEM Visualization on the Super Flexibility of Multi-layered Hydroxyapatite Nanobelts with Antibacterial Property. Microscopy and Microanalysis, 2020, 26, 1428-1429.	0.4	0
21	In situ visualization of superior nanomechanical flexibility of individual ydroxyapatite nanobelts. Microscopy and Microanalysis, 2021, 27, 1780-1781.	0.4	0
22	Nondestructive Structural Investigation of Yttria-Stabilized Zirconia Fiber Insulation Tile by Synchrotron X-ray In-Line Phase-Contrast Microtomography. Photonics, 2021, 8, 338.	2.0	0