Sarah Taylor Lovell

List of Publications by Citations

Source: https://exaly.com/author-pdf/1848280/sarah-taylor-lovell-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55 2,642 25 51 g-index

56 3,094 3.8 5.89 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
55	Supplying urban ecosystem services through multifunctional green infrastructure in the United States. <i>Landscape Ecology</i> , 2013 , 28, 1447-1463	4.3	364
54	Multifunctional Urban Agriculture for Sustainable Land Use Planning in the United States. <i>Sustainability</i> , 2010 , 2, 2499-2522	3.6	335
53	Environmental benefits of conservation buffers in the United States: Evidence, promise, and open questions. <i>Agriculture, Ecosystems and Environment</i> , 2006 , 112, 249-260	5.7	190
52	Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth. <i>Landscape and Urban Planning</i> , 2012 , 108, 57-70	7.7	159
51	Urban home food gardens in the Global North: research traditions and future directions. <i>Agriculture and Human Values</i> , 2014 , 31, 285-305	2.7	139
50	Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. <i>Agricultural Systems</i> , 2010 , 103, 327-341	6.1	120
49	Creating multifunctional landscapes: how can the field of ecology inform the design of the landscape?. <i>Frontiers in Ecology and the Environment</i> , 2009 , 7, 212-220	5.5	113
48	Permaculture for agroecology: design, movement, practice, and worldview. A review. <i>Agronomy for Sustainable Development</i> , 2014 , 34, 251-274	6.8	112
47	Environmental challenges threatening the growth of urban agriculture in the United States. <i>Journal of Environmental Quality</i> , 2013 , 42, 1283-94	3.4	107
46	Designing Landscapes for Performance Based on Emerging Principles in Landscape Ecology. <i>Ecology and Society</i> , 2009 , 14,	4.1	86
45	Urban home gardens in the Global North: A mixed methods study of ethnic and migrant home gardens in Chicago, IL. <i>Renewable Agriculture and Food Systems</i> , 2015 , 30, 22-32	1.8	64
44	Agricultural buffers at the rural Irban fringe: an examination of approval by farmers, residents, and academics in the Midwestern United States. <i>Landscape and Urban Planning</i> , 2004 , 69, 299-313	7.7	60
43	Effects of moisture, temperature, and biological activity on the degradation of isoxaflutole in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2002 , 50, 5626-33	5.7	60
42	AgroforestryThe Next Step in Sustainable and Resilient Agriculture. Sustainability, 2016, 8, 574	3.6	59
41	Improving the visual quality of commercial development at the rural Irban fringe. Landscape and Urban Planning, 2006 , 77, 152-166	7.7	58
40	Imidazolinone and Sulfonylurea Resistance in a Biotype of Common Waterhemp (Amaranthus rudis). <i>Weed Science</i> , 1996 , 44, 789-794	2	53
39	Phytotoxic Response and Yield of Soybean (Glycine max) Varieties Treated with Sulfentrazone or Flumioxazin1. <i>Weed Technology</i> , 2001 , 15, 95-102	1.4	52

38	Temperate agroforestry research: considering multifunctional woody polycultures and the design of long-term field trials. <i>Agroforestry Systems</i> , 2018 , 92, 1397-1415	2	42
37	Hydrolysis and Soil Adsorption of the Labile Herbicide Isoxaflutole. <i>Environmental Science & Environmental Science & Technology</i> , 2000 , 34, 3186-3190	10.3	38
36	Grassroots engagement with transition to sustainability: diversity and modes of participation in the international permaculture movement. <i>Ecology and Society</i> , 2015 , 20,	4.1	35
35	Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. <i>PLoS ONE</i> , 2019 , 14, e0212034	3.7	30
34	Preemergence Flumioxazin and Pendimethalin and Postemergence Herbicide Systems for Soybean (Glycine max)1. <i>Weed Technology</i> , 2002 , 16, 502-511	1.4	30
33	Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area. <i>Science of the Total Environment</i> , 2013 , 449, 320-7	10.2	29
32	Enhancing pollination supply in an urban ecosystem through landscape modifications. <i>Landscape and Urban Planning</i> , 2017 , 162, 157-166	7.7	28
31	Frontiers in alley cropping: Transformative solutions for temperate agriculture. <i>Global Change Biology</i> , 2018 , 24, 883-894	11.4	27
30	Ecosystem services and tradeoffs in the home food gardens of African American, Chinese-origin and Mexican-origin households in Chicago, IL. <i>Renewable Agriculture and Food Systems</i> , 2017 , 32, 69-86	1.8	23
29	Using the In Vivo Acetolactate Synthase (ALS) Assay for Identifying Herbicide-Resistant Weeds. <i>Weed Technology</i> , 1996 , 10, 936-942	1.4	23
28	Identifying barriers and motivators for adoption of multifunctional perennial cropping systems by landowners in the Upper Sangamon River Watershed, Illinois. <i>Agroforestry Systems</i> , 2018 , 92, 1155-1169)2	21
27	Performing a New England landscape: Viewing, engaging, and belonging. <i>Journal of Rural Studies</i> , 2014 , 36, 226-236	4.2	18
26	Landowner willingness to embed production agriculture and other land use options in residential areas of Chittenden County, VT. <i>Landscape and Urban Planning</i> , 2011 , 103, 174-184	7.7	16
25	Extent, pattern, and multifunctionality of treed habitats on farms in Vermont, USA. <i>Agroforestry Systems</i> , 2010 , 80, 153-171	2	16
24	Identifying, quantifying and classifying agricultural opportunities for land use planning. <i>Landscape and Urban Planning</i> , 2013 , 118, 29-39	7.7	15
23	Soft Robotics as an Enabling Technology for Agroforestry Practice and Research. <i>Sustainability</i> , 2019 , 11, 6751	3.6	14
22	Weed Control in Field Corn (Zea mays) with RPA 201772 Combinations with Atrazine and S-Metolachlor1. <i>Weed Technology</i> , 2001 , 15, 249-256	1.4	13
21	Livelihoods and production diversity on U.S. permaculture farms. <i>Agroecology and Sustainable Food Systems</i> , 2017 , 41, 588-613	2	11

Computational Agroecology 2016, 20 10 Environmental indicators reflective of road design in a forested landscape. Ecosphere, 2017, 8, e01734 3.1 19 10 A comparison of arthropod abundance and arthropod mediated predation services in urban green 18 3.8 10 spaces. Insect Conservation and Diversity, 2014, 7, 405-412 An adaptive management approach to improve water quality at a model dairy farm in Vermont, 17 3.9 7 USA. *Ecological Engineering*, **2012**, 40, 131-143 Role of sorption and degradation in the herbicidal function of isoxaflutole. Pest Management 16 4.6 7 Science, 2009, 65, 805-10 Designing multifunctional woody polycultures according to landowner preferences in Central 15 2 Illinois. Agroforestry Systems, 2019, 93, 2293-2311 Diversification and labor productivity on US permaculture farms. Renewable Agriculture and Food 1.8 6 14 Systems, 2019, 34, 326-337 Raised Beds for Vegetable Production in Urban Agriculture. Urban Agriculture & Regional Food 1.8 13 Systems, 2018, 3, 180002 Germplasm Development of Underutilized Temperate U.S. Tree Crops. Sustainability, 2019, 11, 1546 3.6 12 3 Using genotyping-by-sequencing derived SNPs to examine the genetic structure and identify a core 11 2.1 set of Corylus americana germplasm. Tree Genetics and Genomes, 2020, 16, 1 Building multifunctionality into agricultural conservation programs: lessons learned from designing agroforestry systems with central Illinois landowners. Renewable Agriculture and Food Systems, 1.8 10 3 2020, 35, 313-321 Food safety considerations of urban agroforestry systems grown in contaminated environments. 1.8 *Urban Agriculture & Regional Food Systems*, **2021**, 6, e20008 Eastern Filbert Blight Resistance in American and Interspecific Hybrid Hazelnuts. Journal of the 2.3 2 American Society for Horticultural Science, 2020, 145, 162-173 Urban agroforestry as a strategy for aligning agroecology with resilience planning initiatives 2021, 101-123 2 6 Urban Agroforestry and Its Potential Integration into City Planning Efforts. CSA News, 2020, 65, 34-37 1 Designing multifunctional urban agroforestry with people in mind. Urban Agriculture & Regional 1.8 Food Systems, 2021, 6, e20016 Community Orchards for Food Sovereignty, Human Health, and Climate Resilience: Indigenous 2.8 \circ Roots and Contemporary Applications. Forests, 2021, 12, 1533

Agroforestry Integration and Multifunctional Landscape Planning for Enhanced Ecosystem Services

from Treed Habitats **2021**, 451-476

LIST OF PUBLICATIONS

Exploring the sociomaterial dynamics of home food gardening in a Black-majority, low-income neighbourhood in Chicago, IL, U.S.A.. *Local Environment*, **2021**, 26, 1398-1420

3.3

Agroforestry at the Landscape Level. *Assa, Cssa and Sssa*, **2021**, 417-435

0.3