
## R K Subbarao Malireddi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847581/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Synergism of TNF-α and IFN-Î <sup>3</sup> Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 2021, 184, 149-168.e17.                                                                                                                                             | 13.5 | 923       |
| 2  | Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2Âand autophagy proteins. Nature Cell Biology, 2015, 17, 893-906.                                                                                                                                                                       | 4.6  | 702       |
| 3  | Caspases in Cell Death, Inflammation, and Pyroptosis. Annual Review of Immunology, 2020, 38, 567-595.                                                                                                                                                                                                                                    | 9.5  | 470       |
| 4  | ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology, 2016, 1, .                                                                                                                                                                                     | 5.6  | 464       |
| 5  | FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3<br>Inflammasomes. Journal of Immunology, 2014, 192, 1835-1846.                                                                                                                                                                                 | 0.4  | 429       |
| 6  | The NOD-Like Receptor NLRP12 Attenuates Colon Inflammation and Tumorigenesis. Cancer Cell, 2011, 20, 649-660.                                                                                                                                                                                                                            | 7.7  | 343       |
| 7  | NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature, 2012, 488, 389-393.                                                                                                                                                                                                                     | 13.7 | 328       |
| 8  | The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nature Immunology, 2015, 16, 467-475.                                                                                                                                                                  | 7.0  | 291       |
| 9  | Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer. Cell, 2015, 162, 45-58.                                                                                                                                                                                                                                     | 13.5 | 266       |
| 10 | DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature, 2019, 573, 590-594.                                                                                                                                                                                                                   | 13.7 | 262       |
| 11 | Engagement of fatty acids with tollâ€like receptor 2 drives interleukinâ€1β production via the ASC/caspase 1<br>pathway in monosodium urate monohydrate crystal–induced gouty arthritis. Arthritis and<br>Rheumatism, 2010, 62, 3237-3248.                                                                                               | 6.7  | 259       |
| 12 | The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity, 2018, 49, 56-65.e4.                                                                                                                                                                                                        | 6.6  | 247       |
| 13 | IRCB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes. Cell, 2016, 167, 382-396.e17.                                                                                                                                                                                                             | 13.5 | 237       |
| 14 | Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 2020, 10, 237.                                                                                                                                                 | 1.8  | 235       |
| 15 | ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis). Frontiers in Cellular and Infection Microbiology, 2019, 9, 406.                                                                                                                                                             | 1.8  | 231       |
| 16 | Concerted Activation of the AIM2 and NLRP3 Inflammasomes Orchestrates Host Protection against Aspergillus Infection. Cell Host and Microbe, 2015, 17, 357-368.                                                                                                                                                                           | 5.1  | 227       |
| 17 | Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation.<br>PLoS Pathogens, 2014, 10, e1004050.                                                                                                                                                                                                  | 2.1  | 215       |
| 18 | Toll or Interleukin-1 Receptor (TIR) Domain-containing Adaptor Inducing Interferon-Î <sup>2</sup> (TRIF)-mediated<br>Caspase-11 Protease Production Integrates Toll-like Receptor 4 (TLR4) Protein- and NIrp3<br>Inflammasome-mediated Host Defense against Enteropathogens. Journal of Biological Chemistry, 2012,<br>287, 34474-34483. | 1.6  | 211       |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 2020, 10, 238.                              | 1.8  | 201       |
| 20 | Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity–independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. Journal of Experimental Medicine, 2020, 217, .   | 4.2  | 178       |
| 21 | TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. Journal of Experimental Medicine, 2018, 215, 1023-1034.                                                 | 4.2  | 167       |
| 22 | NLRC3 is an inhibitory sensor of PI3K–mTOR pathways in cancer. Nature, 2016, 540, 583-587.                                                                                                           | 13.7 | 160       |
| 23 | ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Reports, 2021, 37, 109858.                                                                               | 2.9  | 157       |
| 24 | Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. Journal of Biological Chemistry, 2020, 295, 14040-14052. | 1.6  | 144       |
| 25 | GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever.<br>Journal of Experimental Medicine, 2018, 215, 1519-1529.                                        | 4.2  | 143       |
| 26 | IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. Cell, 2018, 173, 920-933.e13.                                                                                               | 13.5 | 142       |
| 27 | SYK-CARD9 Signaling Axis Promotes Gut Fungi-Mediated Inflammasome Activation to Restrict Colitis and Colon Cancer. Immunity, 2018, 49, 515-530.e5.                                                   | 6.6  | 138       |
| 28 | Fungal Zymosan and Mannan Activate the Cryopyrin Inflammasome. Journal of Biological Chemistry, 2009, 284, 20574-20581.                                                                              | 1.6  | 126       |
| 29 | The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis.<br>European Journal of Immunology, 2011, 41, 2260-2268.                                              | 1.6  | 126       |
| 30 | NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nature Genetics, 2015, 47, 607-614.                             | 9.4  | 126       |
| 31 | ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. Journal of Experimental Medicine, 2017, 214, 2217-2229.                                                       | 4.2  | 126       |
| 32 | Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight, 2020, 5,                                                                                              | 2.3  | 125       |
| 33 | Chronic TLR Stimulation Controls NLRP3 Inflammasome Activation through IL-10 Mediated Regulation of NLRP3 Expression and Caspase-8 Activation. Scientific Reports, 2015, 5, 14488.                   | 1.6  | 120       |
| 34 | Cutting Edge: Proteolytic Inactivation of Poly(ADP-Ribose) Polymerase 1 by the Nlrp3 and Nlrc4<br>Inflammasomes. Journal of Immunology, 2010, 185, 3127-3130.                                        | 0.4  | 114       |
| 35 | The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling<br>Dock2-mediated Rac activation and actin polymerization. Nature Immunology, 2011, 12, 1010-1016.       | 7.0  | 101       |
| 36 | The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal<br>lethality during development. Journal of Biological Chemistry, 2020, 295, 8325-8330.           | 1.6  | 99        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor<br>Growth. ImmunoHorizons, 2021, 5, 568-580.                                                                        | 0.8  | 88        |
| 38 | Role of the Nlrp3 Inflammasome in Microbial Infection. Frontiers in Microbiology, 2011, 2, 12.                                                                                                                           | 1.5  | 87        |
| 39 | Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. Frontiers in Cellular and Infection Microbiology, 2013, 3, 77.                                                | 1.8  | 84        |
| 40 | ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Science Immunology, 2022, 7, eabo6294.                                             | 5.6  | 82        |
| 41 | Galactosaminogalactan activates the inflammasome to provide host protection. Nature, 2020, 588,<br>688-692.                                                                                                              | 13.7 | 78        |
| 42 | Cathepsin B modulates lysosomal biogenesis and host defense against <i>Francisella novicida</i> infection. Journal of Experimental Medicine, 2016, 213, 2081-2097.                                                       | 4.2  | 72        |
| 43 | RIPK1 Distinctly Regulates <i>Yersinia</i> Induced Inflammatory Cell Death, PANoptosis.<br>ImmunoHorizons, 2020, 4, 789-796.                                                                                             | 0.8  | 69        |
| 44 | NLRC3 regulates cellular proliferation and apoptosis to attenuate the development of colorectal cancer. Cell Cycle, 2017, 16, 1243-1251.                                                                                 | 1.3  | 60        |
| 45 | Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection. Nature Microbiology, 2019, 4, 316-327.                                                        | 5.9  | 53        |
| 46 | Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins.<br>Nature Communications, 2021, 12, 496.                                                                              | 5.8  | 51        |
| 47 | IL-10 engages macrophages to shift Th17 cytokine dependency and pathogenicity during T-cell-mediated colitis. Nature Communications, 2015, 6, 6131.                                                                      | 5.8  | 50        |
| 48 | The Homologous Putative GTPases Grn1p from Fission Yeast and the Human GNL3L Are Required for<br>Growth and Play a Role in Processing of Nucleolar Pre-rRNA. Molecular Biology of the Cell, 2006, 17,<br>460-474.        | 0.9  | 43        |
| 49 | PANoptosis components, regulation, and implications. Aging, 2020, 12, 11163-11164.                                                                                                                                       | 1.4  | 40        |
| 50 | Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nature Communications, 2018,<br>9, 2636.                                                                                                        | 5.8  | 38        |
| 51 | Nuclear Transport of Ras-associated Tumor Suppressor Proteins: Different Transport Receptor<br>Binding Specificities for Arginine-rich Nuclear Targeting Signals. Journal of Molecular Biology, 2007,<br>367, 1294-1311. | 2.0  | 36        |
| 52 | Autophagy is redundant for the host defense against systemic Candida albicans infections. European<br>Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 711-722.                                       | 1.3  | 35        |
| 53 | DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response. Journal of Biological Chemistry, 2021, 296, 100579.                                          | 1.6  | 35        |
| 54 | Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathogens, 2021, 17, e1009358.                                                                                                             | 2.1  | 34        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Detrimental Type I Interferon Signaling Dominates Protective AIM2 Inflammasome Responses during<br>Francisella novicida Infection. Cell Reports, 2018, 22, 3168-3174.                       | 2.9 | 32        |
| 56 | A comprehensive guide to studying inflammasome activation and cell death. Nature Protocols, 2020, 15, 3284-3333.                                                                            | 5.5 | 32        |
| 57 | Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunology, 2017, 10, 128-138.                                            | 2.7 | 24        |
| 58 | A Novel Lysine-rich Domain and GTP Binding Motifs Regulate the Nucleolar Retention of Human<br>Guanine Nucleotide Binding Protein, GNL3L. Journal of Molecular Biology, 2006, 364, 637-654. | 2.0 | 22        |
| 59 | Addendum: Defective Dock2 expression in a subset of ASC-deficient mouse lines. Nature Immunology, 2012, 13, 701-702.                                                                        | 7.0 | 22        |
| 60 | Murine Borrelia arthritis is highly dependent on ASC and caspase-1, but independent of NLRP3. Arthritis<br>Research and Therapy, 2012, 14, R247.                                            | 1.6 | 20        |
| 61 | Phosphorylation by MAPK Regulates Simian Immunodeficiency Virus Vpx Protein Nuclear Import and<br>Virus Infectivity. Journal of Biological Chemistry, 2005, 280, 8553-8563.                 | 1.6 | 19        |
| 62 | The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1<br>Expression. Frontiers in Immunology, 2017, 8, 1777.                                         | 2.2 | 17        |
| 63 | A MyD88/IL1R Axis Regulates PD-1 Expression on Tumor-Associated Macrophages and Sustains Their<br>Immunosuppressive Function in Melanoma. Cancer Research, 2021, 81, 2358-2372.             | 0.4 | 16        |
| 64 | Simian Immunodeficiency Virus Vpx Is Imported into the Nucleus via Importin Alpha-Dependent and<br>-Independent Pathways. Journal of Virology, 2006, 80, 526-536.                           | 1.5 | 15        |
| 65 | Nuclear Export of Simian Immunodeficiency Virus Vpx Protein. Journal of Virology, 2006, 80,<br>12271-12282.                                                                                 | 1.5 | 13        |
| 66 | RIPK3 Promotes <i>Mefv</i> Expression and Pyrin Inflammasome Activation via Modulation of mTOR Signaling. Journal of Immunology, 2020, 205, 2778-2785.                                      | 0.4 | 13        |
| 67 | GNL3L Is a Nucleo-Cytoplasmic Shuttling Protein: Role in Cell Cycle Regulation. PLoS ONE, 2015, 10, e0135845.                                                                               | 1.1 | 12        |
| 68 | Hierarchical Cell Death Program Disrupts the Intracellular Niche Required for Burkholderia<br>thailandensis Pathogenesis. MBio, 2021, 12, e0105921.                                         | 1.8 | 12        |
| 69 | Signals and Pathways Regulating Nucleolar Retention of Novel Putative Nucleolar GTPase<br>NGP-1(GNL-2). Biochemistry, 2011, 50, 4521-4536.                                                  | 1.2 | 7         |
| 70 | Food for Training—Western Diet and Inflammatory Memory. Cell Metabolism, 2018, 27, 481-482.                                                                                                 | 7.2 | 3         |
| 71 | TLR and IKK Complex–Mediated Innate Immune Signaling Inhibits Stress Granule Assembly. Journal of<br>Immunology, 2021, 207, 115-124.                                                        | 0.4 | 2         |