List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847483/publications.pdf Version: 2024-02-01

TIAN-VII

#	Article	IF	CITATIONS
1	Mitigating Inter-Story Drift Concentration of Concentrically Braced Steel Frames Using Energy-Dissipative Columns. Journal of Earthquake Engineering, 2022, 26, 221-239.	1.4	4
2	Local buckling and hysteretic behavior of thin-walled Q690 high-strength steel H-section beam-columns. Engineering Structures, 2022, 252, 113729.	2.6	3
3	Ductile Fracture in ASTM A992 Steel Tensile Specimens at Elevated Temperatures. Fire Technology, 2022, 58, 1417-1443.	1.5	2
4	A simplified approach for collapse assessment of multi-Storey steel framed-structures with one column loss. Journal of Constructional Steel Research, 2021, 176, 106391.	1.7	14
5	Uniform material model for constructional steel. , 2021, , 93-151.		0
6	Behavior and design of high-strength steel columns under combined compression and bending. , 2021, , 305-355.		0
7	Investigation on the Performance of Partial Penetration Welds in Multicell Concrete Filled Steel Tubes. Materials, 2021, 14, 7543.	1.3	0
8	Collapse resistance of steel frames with concrete slabs due to penultimate-side column loss. Advances in Structural Engineering, 2020, 23, 1473-1486.	1.2	0
9	Investigation on Postfire Residual Capacity of High-Strength Steel Columns with Axial Restraint. Journal of Structural Engineering, 2020, 146, .	1.7	6
10	Dynamic Effects on Steel Frames with Concrete Slabs under a Sudden Edge-Column Removal Scenario. Journal of Structural Engineering, 2020, 146, .	1.7	26
11	Experimental Study on Behavior of Steel Tube Dampers. Journal of Earthquake Engineering, 2019, , 1-21.	1.4	4
12	Experimental comparative study of coupled shear wall systems with steel and reinforced concrete link beams. Structural Design of Tall and Special Buildings, 2019, 28, e1678.	0.9	8
13	Experimental investigation on cyclic behavior of Q690D high strength steel H-section beam-columns about strong axis. Engineering Structures, 2019, 189, 157-173.	2.6	33
14	Development of Pressure-Impulse Diagrams for Framed PVB-Laminated Glass Windows. Journal of Structural Engineering, 2019, 145, .	1.7	16
15	Cyclic behaviour of bearing-type bolted connections with slot bolt holes. Advances in Structural Engineering, 2019, 22, 792-801.	1.2	3
16	Column effective lengths in sway-permitted modular steel-frame buildings. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2019, 172, 30-41.	0.4	15
17	Collapse resistance of RC beam–slab subassemblies due to column loss at large deflections. Magazine of Concrete Research, 2019, 71, 647-663.	0.9	2
18	Modeling of Behavior of Continuous Energy-Dissipative Steel Columns Under Cyclic Loads. Journal of Earthquake Engineering, 2019, 23, 1560-1583.	1.4	4

#	Article	IF	CITATIONS
19	Collapse resistance of steel beam-concrete slab composite substructures subjected to middle column loss. Journal of Constructional Steel Research, 2018, 145, 471-488.	1.7	18
20	Numerical investigation into high strength Q690 steel columns of welded H-sections under combined compression and bending. Journal of Constructional Steel Research, 2018, 144, 119-134.	1.7	25
21	Seismic behavior of coupled shear wall structures with various concrete and steel coupling beams. Structural Design of Tall and Special Buildings, 2018, 27, e1405.	0.9	9
22	Q460C welded box-section columns under eccentric compression. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2018, 171, 611-624.	0.4	5
23	Structural behaviour of slender columns of high strength S690 steel welded H-sections under compression. Engineering Structures, 2018, 157, 75-85.	2.6	56
24	Theoretical investigations on loadâ€bearing capacity of RC flatâ€plate framed structures subject to middle column loss. Structural Design of Tall and Special Buildings, 2018, 27, e1458.	0.9	2
25	Experimental Studies on Progressive Collapse Resistance of Steel Moment Frames under Localized Furnace Loading. Journal of Structural Engineering, 2018, 144, .	1.7	47
26	Modeling structural behavior of reinforced concrete beam–slab substructures subject to side-column loss at large deflections. Advances in Structural Engineering, 2018, 21, 1051-1071.	1.2	5
27	Experimental study on reinforced concrete frames with two-side connected buckling-restrained steel plate shear walls. Advances in Structural Engineering, 2018, 21, 460-473.	1.2	3
28	High Temperature Mechanical Properties of High Strength Structural Steels Q550, Q690 and Q890. Fire Technology, 2018, 54, 1609-1628.	1.5	40
29	Experimental cyclic behavior and constitutive modeling of high strength structural steels. Construction and Building Materials, 2018, 189, 1264-1285.	3.2	59
30	Analytical modeling on collapse resistance of steel beam-concrete slab composite substructures subjected to side column loss. Engineering Structures, 2018, 169, 238-255.	2.6	25
31	Behaviour and design of composite beams with composite slabs at elevated temperatures. Advances in Structural Engineering, 2017, 20, 1451-1465.	1.2	7
32	Experimental investigation into high strength Q690 steel welded H-sections under combined compression and bending. Journal of Constructional Steel Research, 2017, 138, 449-462.	1.7	51
33	Elevated temperature and hole-type effects on sliding behaviour of bolted connections. Advances in Structural Engineering, 2017, 20, 1962-1970.	1.2	0
34	01.08: Bolted bearing connection with high strength steel and grade 12.9 bolt. Ce/Papers, 2017, 1, 225-233.	0.1	0
35	Simulations on progressive collapse resistance of steel moment frames under localized fire. Journal of Constructional Steel Research, 2017, 138, 380-388.	1.7	42
36	Evaluation and prediction of cyclic response of Q690D steel. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2017, 170, 788-803.	0.4	18

#	Article	IF	CITATIONS
37	An improved consecutive modal pushover procedure for estimating seismic demands of multi-storey framed buildings. Structural Design of Tall and Special Buildings, 2017, 26, e1336.	0.9	9
38	Behavior of Steel–Concrete Partially Composite Beams Subjected to Fire—Part 1: Experimental Study. Fire Technology, 2017, 53, 1039-1058.	1.5	15
39	10.32: Experimental study on high temperature elastic modulus of China made high strength structural steel. Ce/Papers, 2017, 1, 2790-2796.	0.1	0
40	12.04: Experimental and numerical investigation on the Q690 high strength steel slender columns of welded Hâ€sections under compression. Ce/Papers, 2017, 1, 3491-3500.	0.1	1
41	The internal force relationship of rectangular and I-section for bi-linear hardening material with limit strain. International Journal of Steel Structures, 2016, 16, 243-255.	0.6	3
42	Performance and design of shear connectors in composite beams with parallel profiled sheeting at elevated temperatures. International Journal of Steel Structures, 2016, 16, 217-229.	0.6	11
43	Orthogonal analysis and optimization of a K4-rating auto-lifting anti-ram bollard system. International Journal of Steel Structures, 2016, 16, 267-277.	0.6	1
44	Behavior of Q690 high-strength steel columns: Part 1: Experimental investigation. Journal of Constructional Steel Research, 2016, 123, 18-30.	1.7	73
45	Blast test and numerical simulation of point-supported glazing. Advances in Structural Engineering, 2016, 19, 1841-1854.	1.2	8
46	Field measurements and analyses of environmental vibrations induced by high-speed Maglev. Science of the Total Environment, 2016, 568, 1295-1307.	3.9	20
47	Residual Strength of Organic Anchorage Adhesive for Post-installed Rebar at Elevated Temperatures and After Heating. Fire Technology, 2016, 52, 877-895.	1.5	7
48	Investigation on Behavior of Glazing System with Elastomeric Interlayers under Blast Effects. Advances in Structural Engineering, 2015, 18, 1915-1930.	1.2	1
49	Damage mechanisms in cementitious coatings on steel members in bending. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2015, 168, 351-369.	0.4	6
50	Residual stress tests of welded Q690 high-strength steel box- and H-sections. Journal of Constructional Steel Research, 2015, 115, 283-289.	1.7	68
51	Progressive collapse mechanisms investigation of planar steel moment frames under localized fire. Journal of Constructional Steel Research, 2015, 115, 160-168.	1.7	43
52	Behavior of Unrestrained and Restrained Bare Steel Columns Subjected to Localized Fire. Journal of Structural Engineering, 2015, 141, .	1.7	30
53	Effect of Bracing Systems on Fire-Induced Progressive Collapse of Steel Structures Using OpenSees. Fire Technology, 2015, 51, 1249-1273.	1.5	37
54	<i>OpenSees</i> Software Architecture for the Analysis of Structures in Fire. Journal of Computing in Civil Engineering, 2015, 29, .	2.5	44

#	Article	IF	CITATIONS
55	Experimental and numerical study on the behavior of axially compressed high strength steel box-columns. Engineering Structures, 2014, 58, 79-91.	2.6	104
56	An approach for evaluating fire resistance of high strength Q460 steel columns. Frontiers of Structural and Civil Engineering, 2014, 8, 26-35.	1.2	4
57	Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees. Advances in Structural Engineering, 2014, 17, 249-264.	1.2	21
58	Progressive Collapse Mechanisms of Steel Frames Exposed to Fire. Advances in Structural Engineering, 2014, 17, 381-398.	1.2	35
59	Influence of fire scenarios on progressive collapse mechanisms of steel framed structures. Steel Construction, 2014, 7, 169-172.	0.4	8
60	Experimental study on the bend and shear behaviors of steel-concrete composite beams with notched web of inverted T-shaped steel section. International Journal of Steel Structures, 2012, 12, 391-401.	0.6	7
61	The assessment of residual stresses in welded high strength steel box sections. Journal of Constructional Steel Research, 2012, 76, 93-99.	1.7	84
62	Experimental and numerical study on the behavior of axially compressed high strength steel columns with H-section. Engineering Structures, 2012, 43, 149-159.	2.6	83
63	Residual stresses in welded flame-cut high strength steel H-sections. Journal of Constructional Steel Research, 2012, 79, 159-165.	1.7	67
64	Catenary action of restrained steel beam against progressive collapse of steel frameworks. Journal of Central South University, 2012, 19, 537-546.	1.2	6
65	Sensitivity Study on Using Different Formulae for Calculating the Temperature of Insulated Steel Members in Natural Fires. Fire Technology, 2012, 48, 343-366.	1.5	21
66	Development of New-Type Buckling-Restrained Braces and Their Application in Aseismic Steel Frameworks. Advances in Structural Engineering, 2011, 14, 717-730.	1.2	17
67	Bearing capacity of H-beams with corrugated webs under partial compressive loading. , 2011, , .		0
68	A New Method to Analyze the Membrane Action of Composite Floor Slabs in Fire Condition. Fire Technology, 2010, 46, 3-18.	1.5	15
69	Testing of semi-rigid steel–concrete composite frames subjected to vertical loads. Engineering Structures, 2007, 29, 1903-1916.	2.6	36
70	Buckling analysis of tapered lattice columns using a generalized finite element. Communications in Numerical Methods in Engineering, 2004, 20, 479-488.	1.3	7
71	Experimental investigation of two-bolt connections for high strength steel members. , 0, , .		5