André M Da Costa Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847444/publications.pdf

Version: 2024-02-01

361413 2,913 37 20 citations h-index papers

g-index 39 39 39 3716 docs citations times ranked citing authors all docs

345221

36

#	Article	IF	Citations
1	Octanol–Water Partition Coefficients and Aqueous Solubility Data of Monoterpenoids: Experimental, Modeling, and Environmental Distribution. Industrial & Engineering Chemistry Research, 2022, 61, 3154-3167.	3.7	8
2	Selective Separation of Vanillic Acid from Other Lignin-Derived Monomers Using Centrifugal Partition Chromatography: The Effect of pH. ACS Sustainable Chemistry and Engineering, 2022, 10, 4913-4921.	6.7	11
3	Solvent effects on the wood delignification with sustainable solvents. International Journal of Biological Macromolecules, 2022, 211, 490-498.	7.5	4
4	Perspectives of Using DES-Based Systems for Solid–Liquid and Liquid–Liquid Extraction of Metals from E-Waste. Minerals (Basel, Switzerland), 2022, 12, 710.	2.0	6
5	Wood delignification with aqueous solutions of deep eutectic solvents. Industrial Crops and Products, 2021, 160, 113128.	5.2	42
6	Unveiling Modifications of Biomass Polysaccharides during Thermal Treatment in Cholinium Chloride : Lactic Acid Deep Eutectic Solvent. ChemSusChem, 2021, 14, 686-698.	6.8	26
7	New Developments on Ionic Liquid-Tolerant Microorganisms Leading Toward a More Sustainable Biorefinery., 2021,, 57-79.		O
8	Biomass delignification with green solvents towards lignin valorisation: ionic liquids vs deep eutectic solvents. Acta Innovations, 2021, , 64-78.	1.0	20
9	Editorial: Green and Sustainable Solutions for Fractionating Lignocellulosic Biomass. Frontiers in Chemistry, 2021, 9, 803431.	3.6	1
10	Dissolution of lignocellulosic biopolymers in ethanolamine-based protic ionic liquids. Polymer Bulletin, 2020, 77, 3637-3656.	3.3	18
11	Uncovering the potentialities of protic ionic liquids based on alkanolammonium and carboxylate ions and their aqueous solutions as non-derivatizing solvents of Kraft lignin. Industrial Crops and Products, 2020, 143, 111866.	5.2	16
12	Investigation of Kraft Lignin Solubility in Protic Ionic Liquids and Their Aqueous Solutions. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 18193-18202.	3.7	15
13	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	3.8	99
14	Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 18577-18589.	6.7	48
15	Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of \hat{l}^2 -O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance. Green Chemistry, 2020, 22, 2474-2487.	9.0	82
16	Fast and Efficient Method to Evaluate the Potential of Eutectic Solvents to Dissolve Lignocellulosic Components. Sustainability, 2020, 12, 3358.	3.2	12
17	Separation and Recovery of a Hemicelluloseâ€Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid. ChemSusChem, 2018, 11, 1099-1107.	6.8	24
18	Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid. Green Chemistry, 2018, 20, 4043-4057.	9.0	105

#	Article	IF	Citations
19	Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chemistry, 2017, 19, 4200-4233.	9.0	542
20	Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production. Biofuels and Biorefineries, 2017, , 45-80.	0.5	6
21	Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins, and Supercritical CO ₂ . ACS Sustainable Chemistry and Engineering, 2016, 4, 3357-3367.	6.7	81
22	Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chemistry, 2016, 18, 6160-6204.	9.0	136
23	ABS Constituted by Ionic Liquids and Carbohydrates. Green Chemistry and Sustainable Technology, 2016, , 37-60.	0.7	2
24	Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem, 2015, 8, 3366-3390.	6.8	321
25	Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction. RSC Advances, 2015, 5, 47153-47164.	3.6	76
26	Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts. ChemSusChem, 2015, 8, 947-965.	6.8	189
27	Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent. Industrial Crops and Products, 2015, 77, 163-166.	5. 2	33
28	Simple and Efficient Furfural Production from Xylose in Media Containing 1-Butyl-3-Methylimidazolium Hydrogen Sulfate. Industrial & Engineering Chemistry Research, 2015, 54, 8368-8373.	3.7	69
29	Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chemical Reviews, 2015, 115, 3-27.	47.7	238
30	CHAPTER 5. Relevance of Ionic Liquids and Biomass Feedstocks for Biomolecule Extraction. RSC Green Chemistry, 2015, , 121-167.	0.1	1
31	The phase equilibrium phenomenon in model hydrogenation of oleic acid. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2014, 145, 1555-1560.	1.8	7
32	Cattle fat valorisation through biofuel production by hydrogenation in supercritical carbon dioxide. RSC Advances, 2014, 4, 32081.	3.6	14
33	Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresource Technology, 2013, 142, 198-208.	9.6	258
34	Pretreatment and Fractionation of Wheat Straw Using Various Ionic Liquids. Journal of Agricultural and Food Chemistry, 2013, 61, 7874-7882.	5.2	85
35	Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Advances, 2013, 3, 16040.	3.6	112
36	Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustainable Chemical Processes, 2013, 1, .	2.3	192

#	Article	IF	CITATIONS
37	lonic Liquids' Cation and Anion Influence on Aromatic Amine Solubility. Industrial & Engineering Chemistry Research, 2013, 52, 14722-14726.	3.7	14