
André M Da Costa Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847444/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignin transformations for high value applications: towards targeted modifications using green chemistry, 2017, 19, 4200-4233.	9.0	542
2	Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem, 2015, 8, 3366-3390.	6.8	321
3	Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresource Technology, 2013, 142, 198-208.	9.6	258
4	Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chemical Reviews, 2015, 115, 3-27.	47.7	238
5	Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustainable Chemical Processes, 2013, 1, .	2.3	192
6	Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts. ChemSusChem, 2015, 8, 947-965.	6.8	189
7	Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chemistry, 2016, 18, 6160-6204.	9.0	136
8	Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Advances, 2013, 3, 16040.	3.6	112
9	Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid. Green Chemistry, 2018, 20, 4043-4057.	9.0	105
10	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	3.8	99
11	Pretreatment and Fractionation of Wheat Straw Using Various Ionic Liquids. Journal of Agricultural and Food Chemistry, 2013, 61, 7874-7882.	5.2	85
12	Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance. Green Chemistry, 2020, 22, 2474-2487.	9.0	82
13	Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins, and Supercritical CO ₂ . ACS Sustainable Chemistry and Engineering, 2016, 4, 3357-3367.	6.7	81
14	Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction. RSC Advances, 2015, 5, 47153-47164.	3.6	76
15	Simple and Efficient Furfural Production from Xylose in Media Containing 1-Butyl-3-Methylimidazolium Hydrogen Sulfate. Industrial & Engineering Chemistry Research, 2015, 54, 8368-8373.	3.7	69
16	Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 18577-18589.	6.7	48
17	Wood delignification with aqueous solutions of deep eutectic solvents. Industrial Crops and Products, 2021, 160, 113128.	5.2	42
18	Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent. Industrial Crops and Products, 2015, 77, 163-166.	5.2	33

#	Article	IF	CITATIONS
19	Unveiling Modifications of Biomass Polysaccharides during Thermal Treatment in Cholinium Chloride : Lactic Acid Deep Eutectic Solvent. ChemSusChem, 2021, 14, 686-698.	6.8	26
20	Separation and Recovery of a Hemicelluloseâ€Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid. ChemSusChem, 2018, 11, 1099-1107.	6.8	24
21	Biomass delignification with green solvents towards lignin valorisation: ionic liquids vs deep eutectic solvents. Acta Innovations, 2021, , 64-78.	1.0	20
22	Dissolution of lignocellulosic biopolymers in ethanolamine-based protic ionic liquids. Polymer Bulletin, 2020, 77, 3637-3656.	3.3	18
23	Uncovering the potentialities of protic ionic liquids based on alkanolammonium and carboxylate ions and their aqueous solutions as non-derivatizing solvents of Kraft lignin. Industrial Crops and Products, 2020, 143, 111866.	5.2	16
24	Investigation of Kraft Lignin Solubility in Protic Ionic Liquids and Their Aqueous Solutions. Industrial & Engineering Chemistry Research, 2020, 59, 18193-18202.	3.7	15
25	Ionic Liquids' Cation and Anion Influence on Aromatic Amine Solubility. Industrial & Engineering Chemistry Research, 2013, 52, 14722-14726.	3.7	14
26	Cattle fat valorisation through biofuel production by hydrogenation in supercritical carbon dioxide. RSC Advances, 2014, 4, 32081.	3.6	14
27	Fast and Efficient Method to Evaluate the Potential of Eutectic Solvents to Dissolve Lignocellulosic Components. Sustainability, 2020, 12, 3358.	3.2	12
28	Selective Separation of Vanillic Acid from Other Lignin-Derived Monomers Using Centrifugal Partition Chromatography: The Effect of pH. ACS Sustainable Chemistry and Engineering, 2022, 10, 4913-4921.	6.7	11
29	Octanol–Water Partition Coefficients and Aqueous Solubility Data of Monoterpenoids: Experimental, Modeling, and Environmental Distribution. Industrial & Engineering Chemistry Research, 2022, 61, 3154-3167.	3.7	8
30	The phase equilibrium phenomenon in model hydrogenation of oleic acid. Monatshefte Für Chemie, 2014, 145, 1555-1560.	1.8	7
31	Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production. Biofuels and Biorefineries, 2017, , 45-80.	0.5	6
32	Perspectives of Using DES-Based Systems for Solid–Liquid and Liquid–Liquid Extraction of Metals from E-Waste. Minerals (Basel, Switzerland), 2022, 12, 710.	2.0	6
33	Solvent effects on the wood delignification with sustainable solvents. International Journal of Biological Macromolecules, 2022, 211, 490-498.	7.5	4
34	ABS Constituted by Ionic Liquids and Carbohydrates. Green Chemistry and Sustainable Technology, 2016, , 37-60.	0.7	2
35	CHAPTER 5. Relevance of Ionic Liquids and Biomass Feedstocks for Biomolecule Extraction. RSC Green Chemistry, 2015, , 121-167.	0.1	1
36	Editorial: Green and Sustainable Solutions for Fractionating Lignocellulosic Biomass. Frontiers in Chemistry, 2021, 9, 803431.	3.6	1

#	Article	IF	CITATIONS
37	New Developments on Ionic Liquid-Tolerant Microorganisms Leading Toward a More Sustainable Biorefinery. , 2021, , 57-79.		0