List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847392/publications.pdf Version: 2024-02-01

Κειτή Ε Τιστόν

#	Article	IF	CITATIONS
1	Enzyme nomenclature and classification: the state of the art. FEBS Journal, 2023, 290, 2214-2231.	4.7	28
2	Parameter Reliability and Understanding Enzyme Function. Molecules, 2022, 27, 263.	3.8	15
3	Monoamine Oxidases and Their Inhibitors. , 2021, , 994-1004.		0
4	6-Hydroxydopamine: a far from simple neurotoxin. Journal of Neural Transmission, 2020, 127, 213-230.	2.8	32
5	The application of bathophenanthroline for the determination of free iron in parallel with hROS in microdialysis samples. Journal of Neuroscience Methods, 2020, 331, 108530.	2.5	4
6	Monoamine Oxidases and Their Inhibitors. , 2020, , 1-12.		0
7	Theobromine and related methylxanthines as inhibitors of Primary Amine Oxidase. Journal of Food Biochemistry, 2019, 43, e12697.	2.9	8
8	STRENDA DB: enabling the validation and sharing of enzyme kinetics data. FEBS Journal, 2018, 285, 2193-2204.	4.7	38
9	90Âyears of monoamine oxidase: some progress and some confusion. Journal of Neural Transmission, 2018, 125, 1519-1551.	2.8	99
10	A mechanism for bistability in glycosylation. PLoS Computational Biology, 2018, 14, e1006348.	3.2	6
11	Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules, 2017, 22, 1192.	3.8	156
12	Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Frontiers in Neuroscience, 2016, 10, 205.	2.8	111
13	Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Frontiers in Neuroscience, 2016, 10, 541.	2.8	46
14	Reflections on 60Âyears of publication of the Journal of Neurochemistry. Journal of Neurochemistry, 2016, 139, 7-16.	3.9	4
15	A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts. PLoS Computational Biology, 2016, 12, e1004844.	3.2	34
16	Continuous monitoring of highly reactive oxygen radicals during in vivo microdialysis. Journal of Neuroscience Methods, 2015, 251, 1-6.	2.5	3
17	First-in-class thyrotropin-releasing hormone (TRH)-based compound binds to a pharmacologically distinct TRH receptor subtype in human brain and is effective in neurodegenerative models. Neuropharmacology, 2015, 89, 193-203.	4.1	18
18	Fiftyâ€five years of enzyme classification: advances and difficulties. FEBS Journal, 2014, 281, 583-592.	4.7	94

#	Article	IF	CITATIONS
19	Galactosyltransferase 4 is a major control point for glycan branching in <i>N</i> -linked glycosylation. Journal of Cell Science, 2014, 127, 5014-26.	2.0	35
20	Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why it should be helpful. Perspectives in Science, 2014, 1, 131-137.	0.6	65
21	Elucidation of Metabolic Pathways from Enzyme Classification Data. Methods in Molecular Biology, 2014, 1083, 173-186.	0.9	1
22	Kinetic behavior and reversible inhibition of monoamine oxidases—enzymes that many want dead. International Review of Neurobiology, 2011, 100, 43-64.	2.0	13
23	Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson's disease after peripheral administration. Journal of Neural Transmission, 2011, 118, 223-231.	2.8	122
24	Highly reactive oxygen species: detection, formation, and possible functions. Cellular and Molecular Life Sciences, 2011, 68, 2067-2079.	5.4	133
25	ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Research, 2009, 37, D593-D597.	14.5	180
26	Mechanistic aspects of the Fenton reaction under conditions approximated to the extracellular fluid. Journal of Inorganic Biochemistry, 2009, 103, 28-34.	3.5	22
27	Tracing metabolic pathways from enzyme data. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1364-1371.	2.3	8
28	Drug interactions. Drug Metabolism Reviews, 2009, 41, 486-527.	3.6	45
29	Eliciting Possible Reaction Equations and Metabolic Pathways Involving Orphan Metabolites. Journal of Chemical Information and Modeling, 2008, 48, 2335-2349.	5.4	23
30	Functional Group and Substructure Searching as a Tool in Metabolomics. PLoS ONE, 2008, 3, e1537.	2.5	22
31	Species Differences in the Selective Inhibition of Monoamine Oxidase (1-methyl-2-phenylethyl)hydrazine and its Potentiation by Cyanide. Neurochemical Research, 2007, 32, 1783-1790.	3.3	7
32	Monoamine Oxidase Assays. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2006, 30, Unit4.21.	1.1	10
33	The therapeutic potential of monoamine oxidase inhibitors. Nature Reviews Neuroscience, 2006, 7, 295-309.	10.2	1,163
34	Monoamine Oxidases: Certainties and Uncertainties. Current Medicinal Chemistry, 2004, 11, 1965-1982.	2.4	175
35	Interactions of the neurotoxin 6-hydroxydopamine with glyceraldehyde-3-phosphate dehydrogenase. Toxicology Letters, 2002, 128, 197-206.	0.8	5
36	Oxidative stress induces apoptosis in C6 glioma cells: Involvement of mitogen-activated protein kinases and nuclear factor kappa B. Neurotoxicity Research, 2001, 3, 397-409.	2.7	14

#	Article	IF	CITATIONS
37	Species differences in the interactions of the anticonvulsant milacemide and some analogues with monoamine oxidase-B. Biochemical Pharmacology, 1995, 50, 317-324.	4.4	15
38	The interactions of milacemide with monoamine oxidase. Biochemical Pharmacology, 1994, 47, 617-623.	4.4	9
39	Monoamine oxidase inhibitors and the cheese effect. Neurochemical Research, 1993, 18, 1145-1149.	3.3	142
40	Advances in Our Understanding of the Mechanisms of the Neurotoxicity of MPTP and Related Compounds. Journal of Neurochemistry, 1993, 61, 1191-1206.	3.9	538
41	Interactions of the neurotoxin MPTP and its demethylated derivative (PTP) with monoamine oxidase-B. Neurochemical Research, 1992, 17, 791-796.	3.3	7
42	ls the oxidation of milacemide by monoamine oxidase a major factor in its anticonvulsant actions?. Biochemical Pharmacology, 1991, 41, 1731-1737.	4.4	25
43	The sulphydryl groups of ox brain and liver glutamate dehydrogenase preparations and the effects of oxidation on their inhibitor sensitivities. Neurochemical Research, 1991, 16, 773-780.	3.3	4
44	Determination of amines, amine metabolites and some amine metabolizing enzymes by high performance liquid chromatography. Biomedical Chromatography, 1990, 4, 229-233.	1.7	2
45	Interactions of monoamine oxidase with substrates and inhibitors. Medicinal Research Reviews, 1989, 9, 45-89.	10.5	144
46	Determination of the absolute concentrations of mono amine oxidase A and B in human tissues. Biochemical Pharmacology, 1989, 38, 901-905.	4.4	28
47	Deuterium isotope effect of phenelzine on the inhibition of rat liver mitochondrial mono amine oxidase activity. Biochemical Pharmacology, 1989, 38, 4245-4251.	4.4	36
48	The neurotoxicity of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (mptp) and its relevance to parkinson's disease. Neurochemistry International, 1987, 11, 359-373.	3.8	77
49	The oxidation of adrenaline and noradrenaline by the two forms of monoamine oxidase from human and rat brain. Neurochemistry International, 1986, 8, 493-500.	3.8	27
50	The nature of the inhibition of rat liver monoamine oxidase types A and B by the acetylenic inhibitors clorgyline, l-deprenyl and pargyline. Biochemical Pharmacology, 1982, 31, 3555-3561.	4.4	117
51	Kinetic mechanism and enzyme function*. Biochemical Society Transactions, 1980, 8, 242-245.	3.4	12
52	The turnover of the A- AND B-forms of monoamine oxidase in rat liver. Biochemical Pharmacology, 1980, 29, 891-895.	4.4	25
53	THE PURIFICATION AND PROPERTIES OF PIG BRAIN CATECHOL-o-METHYLTRANSFERASE. Journal of Neurochemistry, 1979, 32, 1525-1529.	3.9	7
54	[9] Effects of pH on enzymes. Methods in Enzymology, 1979, 63, 183-234.	1.0	204

#	Article	IF	CITATIONS
55	The Purification and Properties of Pig-Liver Catechol-O-Methyl Transferase. FEBS Journal, 1978, 88, 439-444.	0.2	26
56	Inhibition of monoamine oxidase by amphetamine and related compounds. Biochemical Pharmacology, 1976, 25, 2073-2077.	4.4	167
57	The development of monoamine oxidase in rat liver and brain. FEBS Letters, 1976, 64, 227-229.	2.8	82
58	The Effect of pH on the Kinetics of Beef-Liver Fructose Bisphosphatase. FEBS Journal, 1975, 58, 567-574.	0.2	61
59	The Allosteric Properties of Beef-Liver Fructose Bisphosphatase. FEBS Journal, 1975, 58, 575-585.	0.2	45
60	The Role of Acetyl-CoA in the Reaction Pathway of Pig-Liver Pyruvate Carboxylase. FEBS Journal, 1974, 47, 549-554.	0.2	9
61	Mixed substrate experiments with human brain monoamine oxidase. Biochemical Pharmacology, 1974, 23, 1937-1944.	4.4	25
62	Pig liver pyruvate carboxylase. Purification, properties and cation specificity. Biochemical Journal, 1974, 139, 297-310.	3.7	33
63	Pig liver pyruvate carboxylase. The reaction pathway for the carboxylation of pyruvate. Biochemical Journal, 1974, 139, 311-320.	3.7	24
64	Pig liver pyruvate carboxylase. The reaction pathway for the decarboxylation of oxaloacetate. Biochemical Journal, 1974, 139, 321-329.	3.7	9
65	A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes. Biochemical Journal, 1974, 139, 645-652.	3.7	191
66	A kinetic analysis of enzyme systems involving four substrates. Biochemical Journal, 1974, 141, 789-805.	3.7	24
67	Kinetic studies of bovine liver carbamoyl phosphate synthetase. Biochemical Journal, 1974, 141, 807-816.	3.7	59
68	Product inhibition studies on bovine liver carbamoyl phosphate synthetase. Biochemical Journal, 1974, 141, 817-824.	3.7	38
69	The nature of the electrophoretically separable multiple forms of rat liver monoamine oxidase. Biochemical Journal, 1973, 135, 173-186.	3.7	195
70	Negatively co-operative ligand binding. Biochemical Journal, 1973, 133, 837-842.	3.7	35
71	The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase. Biochemical Journal, 1973, 135, 735-750.	3.7	105