
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1847156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity. Journal of Molecular Structure, 2022, 1250, 131782.	1.8	40
2	Development of thiosemicarbazone-based transition metal complexes as homogeneous catalysts for various organic transformations. Inorganica Chimica Acta, 2022, 532, 120742.	1.2	14
3	Synthesis, structural, DNA/protein binding and cytotoxic studies of copper(I) â^•diimine hydrazone complexes. Inorganica Chimica Acta, 2022, 533, 120780.	1.2	3
4	Effect of N-benzyl group in indole scaffold of thiosemicarbazones on the biological activity of their Pd(II) complexes: DFT, biomolecular interactions, in silico docking, ADME and cytotoxicity studies. Inorganica Chimica Acta, 2022, 534, 120805.	1.2	23
5	Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coordination Chemistry Reviews, 2022, 459, 214403.	9.5	34
6	Design of a dual responsive receptor with oxochromane hydrazide moiety to monitor toxic Hg2+ and Cd2+ ions: Usage on real samples and live cells. Environmental Pollution, 2022, 301, 119036.	3.7	11
7	A new subtle and integrated detector to sense Hg2+ions: A vision towards its applicability on water samples and live cells. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113863.	2.0	4
8	Bidentate acylthiourea ligand anchored Pd-PPh3 complexes with biomolecular binding, cytotoxic, antioxidant and antihemolytic properties. Journal of Inorganic Biochemistry, 2022, 233, 111843.	1.5	10
9	Pd(II)–PPh ₃ complexes of halogen substituted acylthiourea ligands: Biomolecular interactions and <i>in vitro</i> antiâ€proliferative activity. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
10	Impact of denticity of chromone/chromene thiosemicarbazones in the ruthenium(II)â€DMSO complexes on their cytotoxicity against breast cancer cells. Applied Organometallic Chemistry, 2022, 36, .	1.7	3
11	Coordination Behavior of Acylthiourea Ligands in Their Ru(II)–Benzene Complexes─Structures and Anticancer Activity. Organometallics, 2022, 41, 1621-1630.	1.1	33
12	N-substitution in isatin thiosemicarbazones decides nuclearity of Cu(II) complexes – Spectroscopic, molecular docking and cytotoxic studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118963.	2.0	33
13	Spectroscopic, anticancer and antioxidant studies of fluxional trans-[PdCl2(S-acylthiourea)2] complexes. Results in Chemistry, 2021, 3, 100157.	0.9	17
14	Tunable Anticancer Activity of Furoylthioureaâ€Based Ru ^{II} –Arene Complexes and Their Mechanism of Action. Chemistry - A European Journal, 2021, 27, 7418-7433.	1.7	23
15	Synthesis and Anticancer Properties of Bis―and Mono(cationic peptide) Hybrids of Cyclometalated Iridium(III) Complexes: Effect of the Number of Peptide Units on Anticancer Activity. European Journal of Inorganic Chemistry, 2021, 2021, 1796-1814.	1.0	24
16	Effective inhibition of insulin amyloid fibril aggregation by nickel(II) complexes containing heterocyclic thiosemicarbazones. European Biophysics Journal, 2021, 50, 1069-1081.	1.2	4
17	Effect of morphology and (Sn, Cr) doping on inÂvitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. Journal of Science: Advanced Materials and Devices, 2021, 6, 351-363.	1.5	26
18	2′-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper(II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorganica Chimica Acta, 2021, 524, 120440.	1.2	11

#	Article	IF	CITATIONS
19	Binding mode transformation and biological activity on the Ru(II)-DMSO complexes bearing heterocyclic pyrazolyl ligands. Journal of Inorganic Biochemistry, 2021, 223, 111545.	1.5	9
20	Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(<scp>ii</scp>)- <i>p</i> -cymene complexes with acylthiourea ligands— <i>in vitro</i> and <i>in vivo</i> studies. Dalton Transactions, 2021, 50, 16311-16325.	1.6	63
21	Effect of new Pd(II)-aroylthiourea complex on pancreatic cancer cells. Inorganic Chemistry Communication, 2021, 134, 109018.	1.8	2
22	Synthesis, cytotoxicity and docking studies (with SARS-CoV-2) of water-soluble binuclear Ru-p-cymene complex holding indole thiosemicarbazone ligand. Inorganic Chemistry Communication, 2021, 134, 109029.	1.8	18
23	Cyclometalated Iridium(III) Complex–Cationic Peptide Hybrids Trigger Paraptosis in Cancer Cells via an Intracellular Ca2+ Overload from the Endoplasmic Reticulum and a Decrease in Mitochondrial Membrane Potential. Molecules, 2021, 26, 7028.	1.7	16
24	Dinitrobenzene ether reactive turn-on fluorescence probes for the selective detection of H ₂ S. Analytical Methods, 2021, 14, 58-66.	1.3	15
25	Unprecedented formation of palladium(II)-pyrazole based thiourea from chromone thiosemicarbazone and [PdCl2(PPh3)2]: Interaction with biomolecules and apoptosis through mitochondrial signaling pathway. Journal of Inorganic Biochemistry, 2020, 205, 110988.	1.5	34
26	Pd(II)â€NNN Pincer Complexes for Catalyzing Transfer Hydrogenation of Ketones. ChemistrySelect, 2020, 5, 13591-13597.	0.7	4
27	Synthesis of Palladium(II) Complexes via Michael Addition: Antiproliferative Effects through ROS-Mediated Mitochondrial Apoptosis and Docking with SARS-CoV-2. Inorganic Chemistry, 2020, 59, 17109-17122.	1.9	74
28	Synthesis and Molecular Structure of the Zinc(II) Complex Bearing an N, S Donor Ligand. Journal of Structural Chemistry, 2020, 61, 66-72.	0.3	4
29	Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(<scp>ii</scp>) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Transactions, 2020, 49, 9411-9424.	1.6	46
30	Enhanced anticancer activity of half-sandwich Ru(II)-p-cymene complex bearing heterocyclic hydrazone ligand. Inorganic Chemistry Communication, 2020, 119, 108054.	1.8	23
31	Vibrational spectroscopic (FT-IR, FT-Raman), anti-inflammatory, docking and molecular characteristic studies of Ni(II) complex of 2-aminonicotinaldehyde using theoretical and experimental methods. Journal of Molecular Structure, 2019, 1175, 769-781.	1.8	13
32	Molecular structures, Hirshfeld analysis and biological investigations of isatin based thiosemicarbazones. Journal of Molecular Structure, 2019, 1198, 126904.	1.8	22
33	Design, Synthesis, DNA/HSA Binding, and Cytotoxic Activity of Half-Sandwich Ru(II)-Arene Complexes Containing Triarylamine–Thiosemicarbazone Hybrids. ACS Omega, 2019, 4, 11712-11723.	1.6	43
34	NHC-catalyzed green synthesis of functionalized chromones: DFT mechanistic insights and <i>in vitro</i> activities in cancer cells. New Journal of Chemistry, 2019, 43, 13509-13525.	1.4	16
35	Highly active copper(<scp>i</scp>) complexes of aroylthiourea ligands against cancer cells – synthetic and biological studies. New Journal of Chemistry, 2019, 43, 3188-3198.	1.4	26
36	Zinc(II) complexes of indole thiosemicarbazones: DNA/protein binding, molecular docking and in vitro cytotoxicity studies. Polyhedron, 2019, 170, 188-201.	1.0	29

#	Article	IF	CITATIONS
37	Synthesis and Anticancer Activity of [RuCl ₂ (η ⁶ -arene)(aroylthiourea)] Complexes—High Activity against the Human Neuroblastoma (IMR-32) Cancer Cell Line. ACS Omega, 2019, 4, 6245-6256.	1.6	52
38	Half-sandwich Ru(η6-p-cymene) complexes featuring pyrazole appended ligands: Synthesis, DNA binding and in vitro cytotoxicity. Journal of Inorganic Biochemistry, 2019, 194, 74-84.	1.5	29
39	Chemosensing, molecular docking and antioxidant studies of 8-aminoquinoline appended acylthiourea derivatives. Journal of Molecular Structure, 2019, 1185, 450-460.	1.8	16
40	Effect of 2â€Bromopyridine Ancillary Ligand in the Catalysis of Pd(II)â€NNN Pincer Complexes towards Suzukiâ€Miyaura Crossâ€Coupling Reaction. ChemistrySelect, 2019, 4, 2237-2241.	0.7	4
41	Coordination Behavior of <i>N</i> , <i>N</i> ′, <i>N</i> ″-Trisubstituted Guanidine Ligands in Their Ru–Arene Complexes: Synthetic, DNA/Protein Binding, and Cytotoxic Studies. Organometallics, 2019, 38, 753-770.	1.1	48
42	Nickel(II) bis(isatin thiosemicarbazone) complexes induced apoptosis through mitochondrial signaling pathway and G0/G1 cell cycle arrest in IM-9 cells. Journal of Inorganic Biochemistry, 2018, 182, 208-221.	1.5	68
43	Water-Soluble Mono- and Binuclear Ru(η ⁶ - <i>p</i> cymene) Complexes Containing Indole Thiosemicarbazones: Synthesis, DFT Modeling, Biomolecular Interactions, and <i>In Vitro</i> Anticancer Activity through Apoptosis. Organometallics, 2018, 37, 1242-1257.	1.1	77
44	Ru(II)â€ <i>η</i> ^{<i>6</i>} â€benzene Complexes of Dibenzosuberenyl Appended Aroyl/Acylthiourea Ligands: <i>In vitro</i> Biomolecular Interaction Studies and Catalytic Transfer Hydrogenation. ChemistrySelect, 2018, 3, 18-28.	0.7	14
45	Synthesis, crystal structure, DNA binding and antitumor studies of β-diketonate complexes of divalent copper, zinc and palladium. Inorganica Chimica Acta, 2018, 469, 76-86.	1.2	26
46	Synthesis, Structural, Biological Evaluation, Molecular Docking and DFT Studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) Complexes bearing Heterocyclic Thiosemicarbazone ligand. Applied Organometallic Chemistry, 2018, 32, e4415.	1.7	45
47	Half-sandwich Ru(II)(η6-p-cymene) complexes bearing N-dibenzosuberenyl appended thiourea for catalytic transfer hydrogenation and in vitro anticancer activity. Polyhedron, 2018, 152, 147-154.	1.0	24
48	Synthesis, structures and mechanistic pathways of anticancer activity of palladium(<scp>ii</scp>) complexes with indole-3-carbaldehyde thiosemicarbazones. New Journal of Chemistry, 2018, 42, 10818-10832.	1.4	53
49	Synthesis of Ru(<scp>ii</scp>)–benzene complexes containing aroylthiourea ligands, and their binding with biomolecules and in vitro cytotoxicity through apoptosis. New Journal of Chemistry, 2017, 41, 2672-2686.	1.4	62
50	InÂvitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones. Journal of Molecular Structure, 2017, 1145, 160-169.	1.8	40
51	Naphthalenyl appended semicarbazone as "turn on―fluorescent chemosensor for selective recognition of fluoride ion. Journal of Molecular Structure, 2017, 1145, 347-355.	1.8	15
52	An investigation on the DNA/protein binding, DNA cleavage and in vitro anticancer properties of SNO pincer type palladium(II) complexes with N-substituted isatin thiosemicarbazone ligands. Inorganica Chimica Acta, 2017, 466, 61-70.	1.2	53
53	Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications. Journal of Biological Inorganic Chemistry, 2017, 22, 461-480.	1.1	73
54	Ru(II)â€ <i>p</i> â€cymene Thiosemicarbazone Complexes as Inhibitors of Amyloid β (Aβ) Peptide Aggregation and Aβâ€Induced Cytotoxicity. ChemistrySelect, 2017, 2, 11638-11644.	0.7	24

#	Article	IF	CITATIONS
55	Copper, nickel and zinc complexes of 3-acetyl coumarin thiosemicarbazone: Synthesis, characterization and in vitro evaluation of cytotoxicity and DNA/protein binding properties. Polyhedron, 2017, 135, 26-35.	1.0	58
56	Crystal structures of the Schiff base derivatives (<i>E</i>)- <i>N</i> ′-[(1 <i>H</i> -indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate and (<i>E</i>)- <i>N</i> -methyl-2-[1-(2-0x0-2 <i>H</i> -chromen-3-yl)ethylidene]hydrazinecarbothioamide. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 594-597.	0.2	4
57	Half-sandwich RuCl ₂ (Î- ⁶ -p-cymene) core complexes containing sulfur donor aroylthiourea ligands: DNA and protein binding, DNA cleavage and cytotoxic studies. Dalton Transactions, 2016, 45, 12518-12531.	1.6	81
58	Synthesis, X-ray crystal structure, DNA/protein binding, DNA cleavage and cytotoxicity studies of N(4) substituted thiosemicarbazone based copper(II)/nickel(II) complexes. Inorganica Chimica Acta, 2016, 449, 82-95.	1.2	59
59	Isatin based thiosemicarbazone derivatives as potential bioactive agents: Anti-oxidant and molecular docking studies. Journal of Molecular Structure, 2016, 1110, 185-195.	1.8	49
60	Crystal structure ofN-[(naphthalen-1-yl)carbamothioyl]cyclohexanecarboxamide. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o508-o509.	0.2	1
61	Crystal structure ofN-[(4-ethoxyphenyl)carbamothioyl]cyclohexanecarboxamide. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o820-o821.	0.2	0
62	Synthesis, DNA/protein binding, molecular docking, DNA cleavage and in vitro anticancer activity of nickel(<scp>ii</scp>) bis(thiosemicarbazone) complexes. RSC Advances, 2015, 5, 46031-46049.	1.7	135
63	Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives. Journal of Molecular Structure, 2015, 1094, 281-291.	1.8	45
64	Crystal structures of two hydrazinecarbothioamide derivatives: (<i>E</i>)- <i>N</i> -ethyl-2-[(4-oxo-4 <i>H</i> -chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate and (<i>E</i>)-2-[(4-chloro-2 <i>H</i> -chromen-3-yl)methylidene]- <i>N</i> -phenylhydrazinecarbothioamide. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 305-308.	0.2	10
65	Facile and diastereoselective synthesis of 3,2′-spiropyrrolidine-oxindoles derivatives, their molecular docking and antiproliferative activities. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 389-399.	1.0	70
66	Crystal structure of (Z)-2-(1-benzyl-2-oxoindolin-3-ylidene)-N-phenylhydrazine-1-carbothioamide. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o160-o161.	0.2	0
67	Crystal structure of (2 <i>E</i>)- <i>N</i> -methyl-2-[(4-oxo-4 <i>H</i> -chromen-3-yl)methylidene]hydrazinecarbothioamide. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1151-o1151.	0.2	5
68	Crystal structure of (E)-2-[(4-chloro-2H-chromen-3-yl)methylidene]-N-cyclohexylhydrazinecarbothioamide. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1039-o1040.	0.2	2
69	Crystal structure of (2E)-N-methyl-2-(2-oxo-1,2-dihydroacenaphthylen-1-ylidene)hydrazinecarbothioamide. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 415-417.	0.2	4
70	1′-(1,3-Diphenyl-1H-pyrazol-4-yl)-1′′-methyl-2′,3′,5′,6′,7′,7a'-octahydro-1′H-dispiro[Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o317-o317.	l-benzopyra 0.2	n-3 ₅ 2′-pyrr
71	(6′R*,7′R*)-7′-(1,3,-Diphenyl-1H-pyrazol-4-yl)-1,2,5′,6′,7′,7a',3′′,4′′-octahydro-1â€ Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o493-o494.	E²H,2′â€ 0.2	² H-dispiro[acc

 $\begin{array}{l}1\hat{a}\in^2-(1,3-\text{Diphenyl-1H-pyrazol-4-yl})-2\hat{a}\in^2,3\hat{a}\in^2,5\hat{a}\in^2,7\hat{a}\in^2$

#	Article	IF	CITATIONS
73	1′-(1,3-Diphenyl-1H-pyrazol-4-yl)-1′′-(prop-2-en-1-yl)-2′,3′,5′,5′,7′,7a'-hexahydro-1′H-dis 0.75-hydrate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1194-o1195.	piro[1-be	enzgpyran-3,2