
David J Eide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/184669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc transporters and the cellular trafficking of zinc. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 711-722.	4.1	741
2	The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 1999, 40, 37-44.	3.9	699
3	Eukaryotic zinc transporters and their regulation. BioMetals, 2001, 14, 251-270.	4.1	459
4	The Gene Encodes the Low Affinity Zinc Transporter in. Journal of Biological Chemistry, 1996, 271, 23203-23210.	3.4	357
5	Functional Expression of the Human hZIP2 Zinc Transporter. Journal of Biological Chemistry, 2000, 275, 5560-5564.	3.4	295
6	Zinc-induced Inactivation of the Yeast ZRT1 Zinc Transporter Occurs through Endocytosis and Vacuolar Degradation. Journal of Biological Chemistry, 1998, 273, 28617-28624.	3.4	178
7	Biochemical Properties of Vacuolar Zinc Transport Systems ofSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 39187-39194.	3.4	172
8	Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. Journal of Cell Biology, 2004, 166, 325-335.	5.2	172
9	Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochemical Journal, 2000, 346, 329-336.	3.7	168
10	Regulation of Zinc Homeostasis in Yeast by Binding of the ZAP1 Transcriptional Activator to Zinc-responsive Promoter Elements. Journal of Biological Chemistry, 1998, 273, 28713-28720.	3.4	167
11	Induction of the ZRC1 Metal Tolerance Gene in Zinc-limited Yeast Confers Resistance to Zinc Shock. Journal of Biological Chemistry, 2003, 278, 15065-15072.	3.4	158
12	A Histidine-rich Cluster Mediates the Ubiquitination and Degradation of the Human Zinc Transporter, hZIP4, and Protects against Zinc Cytotoxicity. Journal of Biological Chemistry, 2007, 282, 6992-7000.	3.4	158
13	Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter. Human Molecular Genetics, 2004, 13, 563-571.	2.9	136
14	Zn2+-stimulated Endocytosis of the mZIP4 Zinc Transporter Regulates Its Location at the Plasma Membrane. Journal of Biological Chemistry, 2004, 279, 4523-4530.	3.4	131
15	Homeostatic and Adaptive Responses to Zinc Deficiency in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 18565-18569.	3.4	130
16	Combinatorial Control of Yeast FET4 Gene Expression by Iron, Zinc, and Oxygen. Journal of Biological Chemistry, 2002, 277, 33749-33757.	3.4	112
17	Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function. EMBO Journal, 2003, 22, 5137-5146.	7.8	108
18	Heteromeric Protein Complexes Mediate Zinc Transport into the Secretory Pathway of Eukaryotic Cells. Journal of Biological Chemistry, 2005, 280, 28811-28818.	3.4	102

David J Eide

#	Article	IF	CITATIONS
19	Saccharomyces cerevisiae Vacuole in Zinc Storage and Intracellular Zinc Distribution. Eukaryotic Cell, 2007, 6, 1166-1177.	3.4	101
20	Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts. EMBO Journal, 2006, 25, 5726-5734.	7.8	100
21	Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers–Danlos syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3530-8.	7.1	98
22	Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8674-8679.	7.1	89
23	A Cytosolic Domain of the Yeast Zrt1 Zinc Transporter Is Required for Its Post-translational Inactivation in Response to Zinc and Cadmium. Journal of Biological Chemistry, 2003, 278, 39558-39564.	3.4	82
24	Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics, 2008, 9, 370.	2.8	78
25	A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. EMBO Journal, 2000, 19, 3704-3713.	7.8	75
26	The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2. EMBO Journal, 2004, 23, 1123-1132.	7.8	74
27	Regulation of the Yeast TSA1 Peroxiredoxin by ZAP1 Is an Adaptive Response to the Oxidative Stress of Zinc Deficiency. Journal of Biological Chemistry, 2007, 282, 2184-2195.	3.4	67
28	The cellular economy of the <i>Saccharomyces cerevisiae</i> zinc proteome. Metallomics, 2018, 10, 1755-1776.	2.4	66
29	Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae. PLoS Genetics, 2012, 8, e1002699.	3.5	57
30	Peroxiredoxin Chaperone Activity Is Critical for Protein Homeostasis in Zinc-deficient Yeast*. Journal of Biological Chemistry, 2013, 288, 31313-31327.	3.4	54
31	Mapping the DNA Binding Domain of the Zap1 Zinc-responsive Transcriptional Activator. Journal of Biological Chemistry, 2000, 275, 16160-16166.	3.4	50
32	Repression of Sulfate Assimilation Is an Adaptive Response of Yeast to the Oxidative Stress of Zinc Deficiency. Journal of Biological Chemistry, 2009, 284, 27544-27556.	3.4	46
33	Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status. Molecular Microbiology, 2005, 57, 834-846.	2.5	41
34	Cytosolic Superoxide Dismutase (SOD1) Is Critical for Tolerating the Oxidative Stress of Zinc Deficiency in Yeast. PLoS ONE, 2009, 4, e7061.	2.5	41
35	Zinc-Regulated DNA Binding of the Yeast Zap1 Zinc-Responsive Activator. PLoS ONE, 2011, 6, e22535.	2.5	39
36	Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in <i>Saccharomyces cerevisiae</i> . Molecular Microbiology, 2009, 72, 320-334.	2.5	34

DAVID J EIDE

#	Article	IF	CITATIONS
37	Transcription factors and transporters in zinc homeostasis: lessons learned from fungi. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 88-110.	5.2	30
38	Transcriptional regulation of the Zrg17 zinc transporter of the yeast secretory pathway. Biochemical Journal, 2011, 435, 259-266.	3.7	26
39	Roles of Two Activation Domains in Zap1 in the Response to Zinc Deficiency in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 6844-6854.	3.4	23
40	The Zip Family of Zinc Transporters. , 2005, , 261-264.		21
41	Activation of the Yeast UBI4 Polyubiquitin Gene by Zap1 Transcription Factor via an Intragenic Promoter Is Critical for Zinc-deficient Growth. Journal of Biological Chemistry, 2016, 291, 18880-18896.	3.4	19
42	Zinc Metalloregulation of the Zinc Finger Pair Domain. Journal of Biological Chemistry, 2006, 281, 25326-25335.	3.4	17
43	An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome. PLoS ONE, 2016, 11, e0163256.	2.5	14
44	Zincâ€responsive coactivator recruitment by the yeast Zap1 transcription factor. MicrobiologyOpen, 2012, 1, 105-114.	3.0	13
45	Zinc uptake in the Basidiomycota: Characterization of zinc transporters in Ustilago maydis. Molecular Membrane Biology, 2019, 35, 39-50.	2.0	10
46	Zap1â€dependent transcription from an alternative upstream promoter controls translation of <i>RTC4</i> mRNA in zincâ€deficient <i>Saccharomyces cerevisiae</i> . Molecular Microbiology, 2017, 106, 678-689.	2.5	8
47	An Autophagy-Independent Role for <i>ATG41</i> in Sulfur Metabolism During Zinc Deficiency. Genetics, 2018, 208, 1115-1130.	2.9	6
48	The GIS2 Gene Is Repressed by a Zinc-Regulated Bicistronic RNA in Saccharomyces cerevisiae. Genes, 2018, 9, 462.	2.4	4
49	Changes in transcription start sites of Zap1â€regulated genes during zinc deficiency: Implications forHNT1gene regulation. Molecular Microbiology, 2020, 113, 285-296.	2.5	3