Peter B Dervan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1846088/publications.pdf

Version: 2024-02-01

61945 95218 7,175 71 43 68 citations h-index g-index papers 73 73 73 3665 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114065119.	3.3	3
2	Repression of the transcriptional activity of ERRÎ \pm with sequence-specific DNA-binding polyamides. Medicinal Chemistry Research, 2020, 29, 607-616.	1.1	3
3	Single position substitution of hairpin pyrrole-imidazole polyamides imparts distinct DNA-binding profiles across the human genome. PLoS ONE, 2020, 15, e0243905.	1.1	5
4	A Personal Perspective on Chemical Biology: Before the Beginning. Israel Journal of Chemistry, 2019, 59, 71-83.	1.0	4
5	Sequence specific suppression of androgen receptor–DNA binding in vivo by a Py-Im polyamide. Nucleic Acids Research, 2019, 47, 3828-3835.	6.5	19
6	Interference with DNA repair after ionizing radiation by a pyrrole-imidazole polyamide. PLoS ONE, 2018, 13, e0196803.	1.1	4
7	Molecular Recognition of DNA by Py–Im Polyamides: From Discovery to Oncology. Chemical Biology, 2018, , 298-331.	0.1	8
8	A Pyrrole-Imidazole Polyamide Is Active against Enzalutamide-Resistant Prostate Cancer. Cancer Research, 2017, 77, 2207-2212.	0.4	54
9	Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature, 2017, 551, 653-657.	13.7	151
10	Ahmed H. Zewail (1946–2016). Science, 2016, 353, 1103-1103.	6.0	0
10	Ahmed H. Zewail (1946–2016). Science, 2016, 353, 1103-1103. Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells. Cell Reports, 2016, 16, 1218-1227.	6.0	0 51
	Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's		
11	Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreichâ∈™s Ataxia Cells. Cell Reports, 2016, 16, 1218-1227. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif.	2.9	51
11 12	Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells. Cell Reports, 2016, 16, 1218-1227. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12426-12431. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent	2.9	51 25
11 12 13	Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells. Cell Reports, 2016, 16, 1218-1227. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12426-12431. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent Antitumor Activity. Molecular Cancer Research, 2016, 14, 253-266. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors. Molecular Cancer Therapeutics,	2.9 3.3 1.5	51 25 17
11 12 13	Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreichâ∈™s Ataxia Cells. Cell Reports, 2016, 16, 1218-1227. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12426-12431. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent Antitumor Activity. Molecular Cancer Research, 2016, 14, 253-266. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors. Molecular Cancer Therapeutics, 2016, 15, 608-617. A sequence-specific DNA binding small molecule triggers the release of immunogenic signals and	2.9 3.3 1.5	51 25 17 16
11 12 13 14	Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells. Cell Reports, 2016, 16, 1218-1227. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12426-12431. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent Antitumor Activity. Molecular Cancer Research, 2016, 14, 253-266. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors. Molecular Cancer Therapeutics, 2016, 15, 608-617. A sequence-specific DNA binding small molecule triggers the release of immunogenic signals and phagocytosis in a model of B-cell lymphoma. Quarterly Reviews of Biophysics, 2015, 48, 453-464.	2.9 3.3 1.5 1.9	51 25 17 16

#	Article	IF	Citations
19	Animal Toxicity of Hairpin Pyrrole-Imidazole Polyamides Varies with the Turn Unit. Journal of Medicinal Chemistry, 2013, 56, 7449-7457.	2.9	30
20	Antitumor activity of a pyrrole-imidazole polyamide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1863-1868.	3.3	111
21	Activity of a Py–Im Polyamide Targeted to the Estrogen Response Element. Molecular Cancer Therapeutics, 2013, 12, 675-684.	1.9	48
22	Guiding the Design of Synthetic DNA-Binding Molecules with Massively Parallel Sequencing. Journal of the American Chemical Society, 2012, 134, 17814-17822.	6.6	75
23	Microwave Assisted Synthesis of Py-Im Polyamides. Organic Letters, 2012, 14, 2774-2777.	2.4	31
24	Structural Basis for Cyclic Py-Im Polyamide Allosteric Inhibition of Nuclear Receptor Binding. Journal of the American Chemical Society, 2010, 132, 14521-14529.	6.6	88
25	Allosteric modulation of DNA by small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13175-13179.	3.3	142
26	Targeted Chemical Wedges Reveal the Role of Allosteric DNA Modulation in Proteinâ^'DNA Assembly. ACS Chemical Biology, 2008, 3, 220-229.	1.6	47
27	Improved nuclear localization of DNA-binding polyamides. Nucleic Acids Research, 2007, 35, 363-370.	6.5	208
28	Modulating Hypoxia-Inducible Transcription by Disrupting the HIF-1–DNA Interface. ACS Chemical Biology, 2007, 2, 561-571.	1.6	120
29	Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10418-10423.	3.3	183
30	Quantitative Microarray Profiling of DNA-Binding Molecules. Journal of the American Chemical Society, 2007, 129, 12310-12319.	6.6	70
31	Completion of a programmable DNA-binding small molecule library. Tetrahedron, 2007, 63, 6146-6151.	1.0	64
32	Defining the sequence-recognition profile of DNA-binding molecules. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 867-872.	3.3	221
33	DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA{middle dot}TTC repeats in Friedreich's ataxia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11497-11502.	3.3	131
34	Regulation of Gene Expression with Pyrrole-Imidazole Polyamides. , 2005, , 121-152.		1
35	Programmable DNA Binding Oligomers for Control of Transcription. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 373-387.	7.0	104
36	Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16768-16773.	3.3	211

#	Article	IF	Citations
37	Small Molecule Transcription Factor Mimic. Journal of the American Chemical Society, 2004, 126, 15940-15941.	6.6	89
38	From The Cover: Molecular recognition of the nucleosomal "supergroove". Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6864-6869.	3.3	90
39	Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Current Opinion in Structural Biology, 2003, 13, 284-299.	2.6	605
40	Inhibition of Moloney Murine Leukemia Virus Integration Using Polyamides Targeting the Long-Terminal Repeat Sequencesâ€. Biochemistry, 2003, 42, 6249-6258.	1.2	14
41	Crystal Structures of Nucleosome Core Particles in Complex with Minor Groove DNA-binding Ligands. Journal of Molecular Biology, 2003, 326, 371-380.	2.0	147
42	Nuclear localization of pyrrole-imidazole polyamide-fluorescein conjugates in cell culture. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12063-12068.	3.3	140
43	Design of Artificial Transcriptional Activators with Rigid Poly-l-proline Linkers. Journal of the American Chemical Society, 2002, 124, 13067-13071.	6.6	105
44	Structure of a \hat{I}^2 -Alanine-linked Polyamide Bound to a Full Helical Turn of Purine Tract DNA in the 1:1 Motif. Journal of Molecular Biology, 2002, 320, 55-71.	2.0	36
45	Fmoc Solid Phase Synthesis of Polyamides Containing Pyrrole and Imidazole Amino Acids. Organic Letters, 2001, 3, 1201-1203.	2.4	159
46	Sequence-specific Recognition of DNA in the Nucleosome by Pyrrole-Imidazole Polyamides. Journal of Molecular Biology, 2001, 309, 615-629.	2.0	107
47	Kinetic Consequences of Covalent Linkage of DNA Binding Polyamides. Biochemistry, 2001, 40, 3-8.	1.2	41
48	Sequence-Specific Trapping of Topoisomerase I by DNA Binding Polyamideâ^'Camptothecin Conjugates. Journal of the American Chemical Society, 2001, 123, 8657-8661.	6.6	45
49	Towards a minimal motif for artificial transcriptional activators. Chemistry and Biology, 2001, 8, 583-592.	6.2	85
50	Hydroxybenzamide/Pyrrole Pair Distinguishes T·A from A·T Base Pairs in the Minor Groove of DNA. Journal of the American Chemical Society, 2000, 122, 9354-9360.	6.6	25
51	Strand Selective Cleavage of DNA by Diastereomers of Hairpin Polyamide-seco-CBI Conjugates. Journal of the American Chemical Society, 2000, 122, 4856-4864.	6.6	59
52	Sequence Selectivity of 3-Hydroxypyrrole/Pyrrole Ring Pairings in the DNA Minor Groove. Journal of the American Chemical Society, 1999, 121, 11621-11629.	6.6	40
53	Anti-repression of RNA Polymerase II Transcription by Pyrroleâ^Imidazole Polyamidesâ€. Biochemistry, 1999, 38, 10801-10807.	1.2	57
54	Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands. Nature, 1998, 391, 468-471.	13.7	476

#	Article	IF	CITATIONS
55	Structural basis for G•C recognition in the DNA minor groove. Nature Structural Biology, 1998, 5, 104-109.	9.7	226
56	Aliphatic/Aromatic Amino Acid Pairings for Polyamide Recognition in the Minor Groove of DNA. Journal of the American Chemical Society, 1998, 120, 6219-6226.	6.6	135
57	A Structural Basis for Recognition of A·T and T·A Base Pairs in the Minor Groove of B-DNA. , 1998, 282, 111-115.		275
58	Discrimination of 5 -GGGG-3 , 5 -GCGC-3 , and 5 -GGCC-3  Sequences in the Minor Groove of DNA Eight-Ring Hairpin Polyamides. Journal of the American Chemical Society, 1997, 119, 6953-6961.	by 6.6	88
59	Regulation of gene expression by small molecules. Nature, 1997, 387, 202-205.	13.7	488
60	On the pairing rules for recognition in the minor groove of DNA by pyrrole-imidazole polyamides. Chemistry and Biology, 1997, 4, 569-578.	6.2	154
61	Triple-Helix Formation by Pyrimidine Oligonucleotides Containing Nonnatural Nucleosides with Extended Aromatic Nucleobases: Intercalation from the major groove as a method for recognizing C·G and T · A base pairs. Helvetica Chimica Acta, 1997, 80, 2002-2022.	1.0	32
62	Optimization of the Hairpin Polyamide Design for Recognition of the Minor Groove of DNA. Journal of the American Chemical Society, 1996, 118, 6147-6152.	6.6	81
63	Recognition of 5 -(A,T)GG(A,T)2-3  Sequences in the Minor Groove of DNA by Hairpin Polyamides. Journal of the American Chemical Society, 1996, 118, 6153-6159.	6.6	46
64	Recognition of a 5â€~-(A,T)GGG(A,T)2-3â€~ Sequence in the Minor Groove of DNA by an Eight-Ring Hairpin Polyamide. Journal of the American Chemical Society, 1996, 118, 8198-8206.	6.6	49
65	Effects of the A·T/T·A Degeneracy of Pyrroleâ^'Imidazole Polyamide Recognition in the Minor Groove of DNAâ€. Biochemistry, 1996, 35, 12532-12537.	1.2	78
66	Recognition of DNA by designed ligands at subnanomolar concentrations. Nature, 1996, 382, 559-561.	13.7	413
67	Binding affinities of synthetic peptides, pyridine-2-carboxamidonetropsin and 1-methylimidazole-2-carboxamidonetropsin, that form 2:1 complexes in the minor groove of double-helical DNA. Biochemistry, 1993, 32, 11385-11389.	1,2	90
68	Design of peptides that bind in the minor groove of DNA at 5'-(A,T)G(A,T)C(A,T)-3' sequences by a dimeric side-by-side motif. Journal of the American Chemical Society, 1992, 114, 8783-8794.	6.6	218
69	Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature, 1991, 350, 172-174.	13.7	146
70	Interactions Between a Symmetrical Minor Groove Binding Compound and DNA Oligonucleotides: 1H and 19F NMR Studies. Journal of Biomolecular Structure and Dynamics, 1989, 7, 101-117.	2.0	8
71	The Importance of 1 ² -Alanine for Recognition of the Minor Groove of DNA., 0,, 327-339.		3