
Connie S Schmaljohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1846000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Human Vaccines and Immunotherapeutics, 2017, 13, 2837-2848.	3.3	168
2	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	2.1	157
3	Cellular Localization and Antigenic Characterization of Crimean-Congo Hemorrhagic Fever Virus Glycoproteins. Journal of Virology, 2005, 79, 6152-6161.	3.4	127
4	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
5	Broadly neutralizing antibodies target the coronavirus fusion peptide. Science, 2022, 377, 728-735.	12.6	111
6	Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse Model after Antibody Blockade of Type I Interferon. PLoS Neglected Tropical Diseases, 2017, 11, e0005296.	3.0	103
7	A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antiviral Research, 2016, 135, 31-47.	4.1	91
8	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	12.4	79
9	A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Neglected Tropical Diseases, 2017, 11, e0005908.	3.0	76
10	Identification of a Novel C-Terminal Cleavage of Crimean-Congo Hemorrhagic Fever Virus PreG N That Leads to Generation of an NS M Protein. Journal of Virology, 2007, 81, 6632-6642.	3.4	74
11	Vaccines for hantaviruses. Vaccine, 2009, 27, D61-D64.	3.8	74
12	Clinical evaluation of a vaccinia-vectored Hantaan virus vaccine. , 2000, 60, 77-85.		66
13	A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Human Vaccines and Immunotherapeutics, 2017, 13, 2902-2911.	3.3	61
14	GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Science Advances, 2019, 5, eaaw9535.	10.3	56
15	Immune-Mediated Systemic Vasculitis as the Proposed Cause of Sudden-Onset Sensorineural Hearing Loss following Lassa Virus Exposure in Cynomolgus Macaques. MBio, 2018, 9, .	4.1	52
16	A Phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation. Vaccine, 2016, 34, 3607-3612.	3.8	51
17	Presence of broadly reactive and group-specific neutralizing epitopes on newly described isolates of Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 2005, 86, 3327-3336.	2.9	47
18	Self-Amplifying RNA Vaccines for Venezuelan Equine Encephalitis Virus Induce Robust Protective Immunogenicity in Mice. Molecular Therapy, 2019, 27, 850-865.	8.2	45

#	Article	IF	CITATIONS
19	Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 2016, 97, 2799-2808.	2.9	39
20	Mapping of Ebolavirus Neutralization by Monoclonal Antibodies in the ZMapp Cocktail Using Cryo-Electron Tomography and Studies of Cellular Entry. Journal of Virology, 2016, 90, 7618-7627.	3.4	32
21	Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathogens, 2019, 15, e1008050.	4.7	32
22	Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Human Vaccines and Immunotherapeutics, 2019, 15, 2359-2377.	3.3	31
23	A review of Lassa fever vaccine candidates. Current Opinion in Virology, 2019, 37, 105-111.	5.4	31
24	DNA vaccines for HFRS: Laboratory and clinical studies. Virus Research, 2014, 187, 91-96.	2.2	27
25	A Newly Discovered Variant of a Hantavirus inApodemus peninsulae, Far Eastern Russia. Emerging Infectious Diseases, 2001, 7, 912-913.	4.3	25
26	A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. Npj Vaccines, 2021, 6, 31.	6.0	25
27	The Ubiquitin Proteasome System Plays a Role in Venezuelan Equine Encephalitis Virus Infection. PLoS ONE, 2015, 10, e0124792.	2.5	25
28	Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses. PLoS ONE, 2015, 10, e0137786.	2.5	24
29	An immunoinformatics-derived DNA vaccine encoding human class II T cell epitopes of Ebola virus, Sudan virus, and Venezuelan equine encephalitis virus is immunogenic in HLA transgenic mice. Human Vaccines and Immunotherapeutics, 2017, 13, 2824-2836.	3.3	21
30	Immunogenicity of a protective intradermal DNA vaccine against lassa virus in cynomolgus macaques. Human Vaccines and Immunotherapeutics, 2019, 15, 2066-2074.	3.3	21
31	Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export. Virology, 2015, 486, 88-93.	2.4	20
32	Nanoplasmid Vectors Co-expressing Innate Immune Agonists Enhance DNA Vaccines for Venezuelan Equine Encephalitis Virus and Ebola Virus. Molecular Therapy - Methods and Clinical Development, 2020, 17, 810-821.	4.1	20
33	Comparative pathology study of Venezuelan, eastern, and western equine encephalitis viruses in non-human primates. Antiviral Research, 2020, 182, 104875.	4.1	12
34	A Multiagent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits Robust and Durable Virus-Specific Immune Responses in Mice and Rabbits and Completely Protects Mice against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenges. Journal of Immunology Research, 2018, 2018, 1-15.	2.2	11
35	Development of a bead-based immunoassay using virus-like particles for detection of alphaviral humoral response. Journal of Virological Methods, 2019, 270, 12-17.	2.1	11
36	Human Polyclonal Antibodies Produced by Transchromosomal Cattle Provide Partial Protection Against Lethal Zaire Ebolavirus Challenge in Rhesus Macaques. Journal of Infectious Diseases, 2018, 218, S658-S661.	4.0	10

CONNIE S SCHMALJOHN

#	Article	IF	CITATIONS
37	Toll-like receptor 4 mediates blood-brain barrier permeability and disease in C3H mice during Venezuelan equine encephalitis virus infection. Virulence, 2021, 12, 430-443.	4.4	10
38	Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS ONE, 2018, 13, e0191983.	2.5	10
39	Multivalent DNA Vaccines as a Strategy to Combat Multiple Concurrent Epidemics: Mosquito-Borne and Hemorrhagic Fever Viruses. Viruses, 2021, 13, 382.	3.3	9
40	The genetic adjuvant IL-12 enhances the protective efficacy of a DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular injection in mice. Antiviral Research, 2018, 159, 113-121.	4.1	8
41	The Genetic Adjuvants Interleukin-12 and Granulocyte-Macrophage Colony Stimulating Factor Enhance the Immunogenicity of an Ebola Virus Deoxyribonucleic Acid Vaccine in Mice. Journal of Infectious Diseases, 2018, 218, S519-S527.	4.0	8
42	Meeting report: Eleventh International Conference on Hantaviruses. Antiviral Research, 2020, 176, 104733.	4.1	8
43	Military vaccines in today's environment. Human Vaccines and Immunotherapeutics, 2012, 8, 1126-1128.	3.3	6
44	Combinatorial peptide-based epitope mapping from Ebola virus DNA vaccines and infections reveals residue-level determinants of antibody binding. Human Vaccines and Immunotherapeutics, 2017, 13, 2953-2966.	3.3	4
45	Editorial overview: Lassa virus. Current Opinion in Virology, 2019, 37, vii-ix.	5.4	2
46	Junin Virus Activates p38 MAPK and HSP27 Upon Entry. Frontiers in Cellular and Infection Microbiology, 2022, 12, 798978.	3.9	2