Amin Bahrami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1845598/publications.pdf

Version: 2024-02-01

279798 345221 1,863 39 23 36 citations h-index g-index papers 42 42 42 1533 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Surface Modification of Bismuth by ALD of Antimony Oxide for Suppressing Lattice Thermal Conductivity. ACS Applied Energy Materials, 2022, 5, 4041-4046.	5.1	9
2	Structural and Electrochemical Properties of Layered P2-Na0.8Co0.8Ti0.2O2 Cathode in Sodium-Ion Batteries. Energies, 2022, 15, 3371.	3.1	3
3	Current Stateâ€ofâ€theâ€Art in the Interface/Surface Modification of Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2101877.	19.5	37
4	Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science, 2021, 87, 100929.	31.2	52
5	Improving the Interfacial Reaction Between Cristobalite Silica from Rice Husk and Al–Mg–Si by CVD-Si3N4 Deposition. Waste and Biomass Valorization, 2020, 11, 3789-3799.	3.4	16
6	Surpassing Cu–Ta Miscibility Barriers Using a Highâ€Current Pulsed Arc. Advanced Materials Interfaces, 2020, 7, 2000921.	3.7	1
7	Wear resistance of graphenic-nickel composite coating on austenitic stainless steel. Materials Letters, 2020, 281, 128769.	2.6	20
8	Waste Recycling in Thermoelectric Materials. Advanced Energy Materials, 2020, 10, 1904159.	19.5	62
9	Structure, mechanical properties and corrosion resistance of amorphous Ti-Cr-O coatings. Surface and Coatings Technology, 2019, 374, 690-699.	4.8	37
10	Mechanical properties and microstructural stability of CuTa/Cu composite coatings. Surface and Coatings Technology, 2019, 364, 22-31.	4.8	32
11	Structural changes in NiO-Ce0.8Sm0.2O2â^'x anode under reducing atmosphere. Materials Characterization, 2019, 150, 8-12.	4.4	4
12	Fabrication of aligned porous LaNi0.6Fe0.4O3 perovskite by water based freeze casting. Chemical Physics Letters, 2018, 700, 138-144.	2.6	18
13	Bilayer graded Al/B ₄ C/rice husk ash composite: Wettability behavior, thermo-mechanical, and electrical properties. Journal of Composite Materials, 2018, 52, 3745-3758.	2.4	27
14	Compositional and Triboâ€Mechanical Characterization of Tiâ€Ta Coatings Prepared by Confocal Dual Magnetron Coâ€Sputtering. Advanced Engineering Materials, 2018, 20, 1700687.	3.5	25
15	Surface modification of rice-husk ash (RHA) by Si3N4 coating to promote its wetting by Al-Mg-Si alloys. Materials Chemistry and Physics, 2018, 203, 223-234.	4.0	17
16	Kinetics of Silicon Nitride Formation on SiO ₂ â€Derived Rice Husk Ash Using the Chemical Vapor Infiltration Method. International Journal of Chemical Kinetics, 2017, 49, 293-302.	1.6	7
17	Mechanical, thermal and electrical properties of monolayer and bilayer graded Al/SiC/rice husk ash (RHA) composite. Journal of Alloys and Compounds, 2017, 699, 308-322.	5.5	40
18	Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chemistry, 2017, 19, 188-195.	9.0	66

#	Article	IF	CITATIONS
19	Electrical and thermomechanical properties of CVI- Si3N4 porous rice husk ash infiltrated by Al-Mg-Si alloys. Journal of Alloys and Compounds, 2017, 696, 856-868.	5 . 5	35
20	Macroporous polymer-derived SiO2/SiOC monoliths freeze-cast from polysiloxane and amorphous silica derived from rice husk. Journal of the European Ceramic Society, 2017, 37, 4809-4820.	5.7	51
21	Tailoring microstructure and properties of bilayer-graded Al/B4C/MgAl2O4 composites by single-stage pressureless infiltration. Journal of Alloys and Compounds, 2017, 694, 408-418.	5. 5	33
22	Mechanism and Parameters Controlling the Decomposition Kinetics of Na ₂ SiF ₆ Powder to SiF ₄ . International Journal of Chemical Kinetics, 2016, 48, 379-395.	1.6	9
23	Microstructure and properties of bilayer-graded Al-matrix composites by one-step pressureless infiltration of B4C/rice-husk ash preforms. Materials Research Society Symposia Proceedings, 2016, 1820, 1.	0.1	0
24	Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Critical Reviews in Environmental Science and Technology, 2016, 46, 143-208.	12.8	159
25	Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. Journal of Alloys and Compounds, 2015, 644, 256-266.	5.5	61
26	Effect of sintering temperature on tribological behavior of Ce-TZP/Al ₂ O ₃ -aluminum nanocomposite. Journal of Composite Materials, 2015, 49, 3507-3514.	2.4	24
27	Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al–Si–Mg alloys. Applied Surface Science, 2015, 357, 1104-1113.	6.1	44
28	Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion. Materials & Design, 2015, 67, 224-231.	5.1	111
29	Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 2015, 264, 899-935.	12.7	441
30	Manufacturing Wear-Resistant 10Ce-TZP/Al ₂ O ₃ Nanoparticle Aluminum Composite by Powder Metallurgy Processing. Materials and Manufacturing Processes, 2014, 29, 1237-1244.	4.7	49
31	Mechanical and Tribological Characterization of Al-Mg2Si Composites After Yttrium Addition and Heat Treatment. Journal of Materials Engineering and Performance, 2014, 23, 1146-1156.	2.5	46
32	Effect of hot extrusion on wear properties of Al–15wt.% Mg2Si in situ metal matrix composites. Materials & Design, 2014, 53, 774-781.	5.1	118
33	The Effect of Ti on Mechanical Properties of Extruded In-Situ Al-15Âpct Mg2Si Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4366-4373.	2.2	43
34	Effect of 10Ce-TZP/Al2O3 nanocomposite particle amount and sintering temperature on the microstructure and mechanical properties of Al/(10Ce-TZP/Al2O3) nanocomposites. Materials & Design, 2013, 50, 85-91.	5.1	39
35	The effect of Zr on the microstructure and tensile properties of hot-extruded Al–Mg2Si composite. Materials & Design, 2012, 36, 323-330.	5.1	53
36	The influence of Li on the tensile properties of extruded in situ Al–15%Mg2Si composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 346-353.	5.6	36

3

#	Article	IF	CITATIONS
37	The simultaneous efect of extrusion and T6 treatment on the mechanical properties of Al-15wt.%Mg2Si composite. HTM - Journal of Heat Treatment and Materials, 2012, 67, 378-385.	0.2	9
38	The Influence of Yttrium Rich Intermetallic Phases and Heat Treatment on the Microstructure, Hardness and Wear Properties of Al-15%Mg ₂ Si Composite. Key Engineering Materials, 0, 471-472, 1165-1170.	0.4	2
39	Microstructure and Tensile Properties of Al-15wt%Mg ₂ Si Composite after Hot Extrusion and Heat Treatment. Key Engineering Materials, 0, 471-472, 1171-1176.	0.4	27