Teresa Odorisio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1845390/publications.pdf Version: 2024-02-01

TEDESA ODODISIO

#	Article	IF	CITATIONS
1	Innovative Cell and Platelet Rich Plasma Therapies for Diabetic Foot Ulcer Treatment: The Allogeneic Approach. Frontiers in Bioengineering and Biotechnology, 2022, 10, 869408.	4.1	9
2	Dysregulation of microRNA expression in diabetic skin. Journal of Dermatological Science, 2020, 98, 186-194.	1.9	5
3	Decorin counteracts disease progression in mice with recessive dystrophic epidermolysis bullosa. Matrix Biology, 2019, 81, 3-16.	3.6	38
4	Non-animal models in dermatological research. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 177-202.	1.5	25
5	Mice over-expressing placenta growth factor in the skin exhibit increased vascularization and vessel permeability independently of VEGF-A. Journal of Dermatological Science, 2018, 90, 93-96.	1.9	4
6	Thyroid diseases and skin autoimmunity. Reviews in Endocrine and Metabolic Disorders, 2018, 19, 311-323.	5.7	22
7	Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biology, 2017, 63, 1-10.	3.6	81
8	Pathomechanisms of Altered Wound Healing in Recessive Dystrophic Epidermolysis Bullosa. American Journal of Pathology, 2017, 187, 1445-1453.	3.8	56
9	Vitiligo and Autoimmune Thyroid Disorders. Frontiers in Endocrinology, 2017, 8, 290.	3.5	38
10	Epigenetic Control of Skin Re-Epithelialization: the NF-kB/JMJD3ÂConnection. Journal of Investigative Dermatology, 2016, 136, 738-740.	0.7	8
11	The E3 ligase Itch knockout mice show hyperproliferation and wound healing alteration. FEBS Journal, 2015, 282, 4435-4449.	4.7	9
12	Interleukin-22 Promotes Wound Repair in Diabetes by Improving Keratinocyte Pro-Healing Functions. Journal of Investigative Dermatology, 2015, 135, 2862-2870.	0.7	78
13	Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity. Human Molecular Genetics, 2014, 23, 3907-3922.	2.9	88
14	Diabetes impairs adipose tissue–derived stem cell function and efficiency in promoting wound healing. Wound Repair and Regeneration, 2013, 21, 545-553.	3.0	178
15	p63–microRNA feedback in keratinocyte senescence. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1133-1138.	7.1	161
16	The atypical retinoid E-3-(3'-Adamantan-1-yl-4'-methoxybiphenyl-4-yl)-2-propenoic acid (ST1898) displays comedolytic activity in the rhino mouse model. European Journal of Dermatology, 2012, 22, 505-511.	0.6	5
17	Expression of vascular endothelial growth factor in primary cutaneous melanoma predicts sentinel lymph node positivity. Journal of Cutaneous Pathology, 2012, 39, 826-834.	1.3	27
18	Impaired Keratinocyte Proliferative and Clonogenic Potential in Transgenic Mice Overexpressing 14-3-3Ï <i>f</i> in the Epidermis. Journal of Investigative Dermatology, 2011, 131, 1821-1829.	0.7	14

TERESA ODORISIO

#	Article	IF	CITATIONS
19	TSH Receptor and Thyroid-Specific Gene Expression in Human Skin. Journal of Investigative Dermatology, 2010, 130, 93-101.	0.7	100
20	Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. Journal of Clinical Investigation, 2009, 119, 3573-85.	8.2	840
21	HIF1 transcription factor regulates laminin-332 expression and keratinocyte migration. Journal of Cell Science, 2008, 121, 2992-3001.	2.0	49
22	Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. Journal of Experimental Medicine, 2007, 204, 1431-1440.	8.5	167
23	Regulation of angiogenesis: Wound healing as a model. Progress in Histochemistry and Cytochemistry, 2007, 42, 115-170.	5.1	290
24	Placenta Growth Factor in Diabetic Wound Healing. American Journal of Pathology, 2006, 169, 1167-1182.	3.8	106
25	The placenta growth factor in skin angiogenesis. Journal of Dermatological Science, 2006, 41, 11-19.	1.9	67
26	Corrigendum to "The placenta growth factor in skin angiogenesis―[J. Dermatol. Sci. 41(2006) 11–19]. Journal of Dermatological Science, 2006, 43, 71.	1.9	4
27	Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer, 2003, 98, 789-797.	4.1	85
28	Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. Journal of Cell Science, 2002, 115, 2559-2567.	2.0	170
29	Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. Journal of Cell Science, 2002, 115, 2559-67.	2.0	144
30	Molecular control of physiological skin angiogenesis. European Journal of Dermatology, 2002, 12, VII-X.	0.6	8
31	Placenta Growth Factor is Induced in Human Keratinocytes during Wound Healing. Journal of Investigative Dermatology, 2000, 115, 388-395.	0.7	86
32	Human Melanoma Cells Secrete and Respond to Placenta Growth Factor and Vascular Endothelial Growth Factor. Journal of Investigative Dermatology, 2000, 115, 1000-1007.	0.7	151
33	The meiotic checkpoint monitoring sypapsis eliminates spermatocytes via p53-independent apoptosis. Nature Genetics, 1998, 18, 257-261.	21.4	246
34	Fertile XY*O male mice: evidence for a mutation which circumvents the â€~meiotic quality control'. Genetical Research, 1997, 70, 79-89.	0.9	0
35	Transcriptional Analysis of the Candidate Spermatogenesis GeneUbe1yand of the Closely RelatedUbe1xShows That They Are Coexpressed in Spermatogonia and Spermatids but Are Repressed in Pachytene Spermatocytes. Developmental Biology, 1996, 180, 336-343.	2.0	61
36	Low-affinity nerve growth factor receptor is expressed during testicular morphogenesis and in germ cells at specific stages of spermatogenesis. Molecular Reproduction and Development, 1994, 37, 157-166.	2.0	28