List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1845352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing and Implementing a Laboratory Safety Course Focusing on Biodiesel and Biolubricants to Train Student Researchers and Promote Safety Culture. Journal of Chemical Education, 2021, 98, 134-142.	2.3	6
2	Towards a more efficient Hydrothermal Carbonization: Processing water recirculation under different conditions. Waste Management, 2021, 132, 115-123.	7.4	17
3	Pine cone pyrolysis: Optimization of temperature for energy recovery. Environmental Progress and Sustainable Energy, 2020, 39, 13272.	2.3	16
4	Suitability of hydrothermal carbonization to convert water hyacinth to added-value products. Renewable Energy, 2020, 146, 1649-1658.	8.9	42
5	COVID-19 Outbreak: Insights about Teaching Tasks in a Chemical Engineering Laboratory. Education Sciences, 2020, 10, 226.	2.6	13
6	Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. Molecules, 2020, 25, 2264.	3.8	24
7	Hydrothermal carbonization as a preliminary step to pine cone pyrolysis for bioenergy production. Comptes Rendus Chimie, 2020, 23, 607-621.	0.5	3
8	Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization. Molecules, 2019, 24, 3996.	3.8	6
9	Hydrocarbonization. Does It Worth to Be Called a Pretreatment?. , 2019, , .		1
10	Behavior of Stable Carbon and Stable Nitrogen Isotopes during Hydrothermal Carbonization of biomass. Journal of Analytical and Applied Pyrolysis, 2018, 131, 85-92.	5.5	11
11	Method for promoting in-situ hydrochar porosity in hydrothermal carbonization of almond shells with air activation. Journal of Supercritical Fluids, 2018, 138, 187-192.	3.2	26
12	Towards sustainable micro-pollutants' removal from wastewaters: caffeine solubility, self-diffusion and adsorption studies from aqueous solutions into hydrochars. Molecular Physics, 2018, 116, 2129-2141.	1.7	13
13	Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies, 2018, 11, 216.	3.1	134
14	STUDY OF THE DEVOLATILIZATION KINETICS OF KENAF BY ISOCONVERSIONAL METHODS. INFLUENCE OF VARIABLES. Environmental Engineering and Management Journal, 2018, 17, 1417-1424.	0.6	0
15	Modelling the composition of the gas obtained by steam reforming of glycerine. Energy Conversion and Management, 2017, 146, 147-157.	9.2	13
16	Dependence of the Microporosity of Activated Carbons on the Lignocellulosic Composition of the Precursors. Energies, 2017, 10, 542.	3.1	20
17	Production of Cost-Effective Mesoporous Materials from Prawn Shell Hydrocarbonization. Nanoscale Research Letters, 2016, 11, 435.	5.7	6
18	Homogeneous Diffusion Solid Model as a Realistic Approach to Describe Adsorption onto Materials with Different Geometries. Nanoscale Research Letters, 2016, 11, 547.	5.7	3

#	Article	IF	CITATIONS
19	Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Management, 2016, 47, 122-132.	7.4	190
20	Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling. Energy, 2016, 94, 600-608.	8.8	69
21	Glycerin, a Biodiesel By-Product with Potentiality to Produce Hydrogen by Steam Gasification. Energies, 2015, 8, 12765-12775.	3.1	15
22	Study of variables in energy densification of olive stone by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis, 2015, 113, 307-314.	5.5	77
23	Biomass pyrolysis toward hydrocarbonization. Influence on subsequent steam gasification processes. Journal of Analytical and Applied Pyrolysis, 2015, 113, 380-389.	5.5	33
24	Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresource Technology, 2015, 183, 221-228.	9.6	241
25	Improvement of spent activated carbon regeneration by wet oxidation processes. Journal of Supercritical Fluids, 2015, 104, 94-103.	3.2	23
26	TÉCNICAS DESTINADAS A LA REDUCCIÓN DE EMISIONES EN EL APROVECHAMIENTO ENERGÉTICO DE BIOMASA - d7088_ACELERADO. Dyna (Spain), 2015, 90, 130-130.	0.2	0
27	Control of Several Emissions during Olive Pomace Thermal Degradation. International Journal of Molecular Sciences, 2014, 15, 18349-18361.	4.1	17
28	Fundamental study on the thermal regeneration stages of exhausted activated carbons: kinetics. Journal of Thermal Analysis and Calorimetry, 2014, 115, 537-543.	3.6	13
29	Cyclic adsorption/thermal regeneration of activated carbons. Journal of Analytical and Applied Pyrolysis, 2014, 106, 112-117.	5.5	53
30	Aqueous thermal desorption as an effective way to regenerate spent activated carbons. Journal of Supercritical Fluids, 2014, 85, 24-30.	3.2	10
31	Surface free energy analysis of adsorbents used for radioiodine adsorption. Applied Surface Science, 2013, 282, 714-717.	6.1	13
32	Comparative study on the thermal reactivation of spent adsorbents. Fuel Processing Technology, 2013, 116, 358-365.	7.2	19
33	Opportunities given by final degree dissertations inside the EHEA to enhance ethical learning in technical education. European Journal of Engineering Education, 2013, 38, 149-158.	2.3	9
34	Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous and Mesoporous Materials, 2013, 165, 127-133.	4.4	207
35	Two stage thermal regeneration of exhausted activated carbons. Steam gasification of effluents. Journal of Analytical and Applied Pyrolysis, 2013, 103, 201-206.	5.5	28
36	Influence of morphology, porosity and crystal structure of CaCO3 precursors on the CO2 capture performance of CaO-derived sorbents. Chemical Engineering Journal, 2013, 217, 71-81.	12.7	42

#	Article	IF	CITATIONS
37	Fundamental Studies of Methyl Iodide Adsorption in DABCO Impregnated Activated Carbons. Langmuir, 2013, 29, 6849-6855.	3.5	16
38	Study of the emissions and kinetic parameters during combustion of grape pomace: Dilution as an effective way to reduce pollution. Fuel Processing Technology, 2012, 103, 160-165.	7.2	27
39	Characterization and combustion of olive pomace and forest residue pellets. Fuel Processing Technology, 2012, 103, 91-96.	7.2	102
40	Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Processing Technology, 2012, 103, 78-83.	7.2	220
41	Study of the Contributions of Nonâ€&pecific and Specific Interactions during Fluoxetine Adsorption onto Activated Carbons. Clean - Soil, Air, Water, 2012, 40, 698-705.	1.1	11
42	Reduction of tars by dolomite cracking during two-stage gasification of olive cake. Biomass and Bioenergy, 2011, 35, 4324-4330.	5.7	36
43	Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons. Fuel Processing Technology, 2011, 92, 247-252.	7.2	72
44	Characterization of grape pomace and pyrenean oak pellets. Fuel Processing Technology, 2011, 92, 278-283.	7.2	65
45	Modelling the Adsorption of <i>p</i> -Nitrophenol by the Boyd Method in Conjunction with the Finite Element Method. Adsorption Science and Technology, 2010, 28, 671-687.	3.2	4
46	Study of the Mechanisms Involved in the Adsorption of Amitriptyline from Aqueous Solution onto Activated Carbons. Adsorption Science and Technology, 2010, 28, 739-750.	3.2	9
47	Emissions from thermal degradation of pellets with different contents of olive waste and forest residues. Fuel Processing Technology, 2010, 91, 1459-1463.	7.2	26
48	Biodiesel by Enzymatic Transesterification of Sunflower Oil with Ethanol. Journal of Biobased Materials and Bioenergy, 2010, 4, 87-94.	0.3	6
49	DE LA EFICACIA A LA SOSTENIBILIDAD. FROM EFICIENCY TO SUSTAINABILITY Dyna (Spain), 2010, 85, 575-580.	0.2	6
50	Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties. Journal of Hazardous Materials, 2009, 167, 904-910.	12.4	76
51	Catalytic pyrolysis of exhausted olive oil waste. Journal of Analytical and Applied Pyrolysis, 2009, 85, 197-203.	5.5	59
52	Jerusalem artichoke pyrolysis: Energetic evaluation. Journal of Analytical and Applied Pyrolysis, 2009, 85, 294-300.	5.5	11
53	Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis, 2009, 85, 134-141.	5.5	240
54	Porosity Development in Activated Carbons Prepared from Walnut Shells by Carbon Dioxide or Steam Activation. Industrial & Engineering Chemistry Research, 2009, 48, 7474-7481.	3.7	102

#	Article	IF	CITATIONS
55	Control of pore development during CO2 and steam activation of olive stones. Fuel Processing Technology, 2008, 89, 715-720.	7.2	121
56	Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production. Fuel Processing Technology, 2008, 89, 764-772.	7.2	123
57	Olive stone: a source of energy generation and a suitable precursor for activated carbon production. Renewable Energy and Power Quality Journal, 2008, 1, 608-612.	0.2	1
58	Air-activated carbons from almond tree pruning: Preparation and characterization. Applied Surface Science, 2006, 252, 5988-5992.	6.1	16
59	Carbon dioxide-activated carbons from almond tree pruning: Preparation and characterization. Applied Surface Science, 2006, 252, 5993-5998.	6.1	17
60	Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Processing Technology, 2006, 87, 109-115.	7.2	79
61	Plant for the production of activated carbon and electric power from the gases originated in gasification processes. Fuel Processing Technology, 2006, 87, 117-122.	7.2	5
62	Almond residues gasification plant for generation of electric power. Preliminary study. Fuel Processing Technology, 2006, 87, 149-155.	7.2	35
63	Viability study of cold generation from biomass in an agrarian exploitation. Fuel Processing Technology, 2006, 87, 129-133.	7.2	2
64	Preparation and characterization of carbons for the retention of halogens in the condenser vacuum system of a thermonuclear plant. Applied Surface Science, 2006, 252, 6036-6041.	6.1	4
65	Characterisation under static and dynamic conditions of commercial activated carbons for their use in wastewater plants. Applied Surface Science, 2006, 252, 6058-6063.	6.1	8
66	Use of almond residues for domestic heating. Study of the combustion parameters in a mural boiler. Fuel Processing Technology, 2005, 86, 1351-1368.	7.2	38
67	Oxidation of MCPA and 2,4-dby UV Radiation, Ozone, and the Combinations UV/H2O2and O3/H2O2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39, 393-409.	1.5	49
68	Providing an added-value to biodiesel by-products: pyrolysis of glicerin. Thermogravimetric study and analysis of sulphur emissions. Renewable Energy and Power Quality Journal, 0, , 1419-1422.	0.2	1
69	On the search of efficient uses for glycerine: steam gasification. Renewable Energy and Power Quality Journal, 0, , 1362-1365.	0.2	0