
Johannes Zellner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/184501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypertrophy in Mesenchymal Stem Cell Chondrogenesis: Effect of TGF-β Isoforms and Chondrogenic Conditioning. Cells Tissues Organs, 2010, 192, 158-166.	2.3	174
2	Role of mesenchymal stem cells in tissue engineering of meniscus. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1150-1161.	4.0	135
3	Stem cell based tissue engineering for meniscus repair. Journal of Biomedical Materials Research - Part A, 2008, 85A, 445-455.	4.0	132
4	Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. , 2013, 101, 1133-1142.		90
5	The role of meniscal tissue in joint protection in early osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 1763-1774.	4.2	84
6	Treatment of long bone defects and non-unions: from research to clinical practice. Cell and Tissue Research, 2012, 347, 501-519.	2.9	72
7	Defect type, localization and marker gene expression determines early adverse events of matrix-associated autologous chondrocyte implantation. Injury, 2015, 46, S2-S9.	1.7	58
8	The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. International Journal of Molecular Sciences, 2019, 20, 484.	4.1	56
9	Autologous mesenchymal stem cells or meniscal cells: what is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation?. Stem Cell Research and Therapy, 2017, 8, 225.	5.5	51
10	Angiogenesis: The role of PDGF-BB on Adiopse-tissue derived Stem Cells (ASCs). Clinical Hemorheology and Microcirculation, 2011, 48, 5-13.	1.7	50
11	Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 1743-1752.	4.2	46
12	<i>In Vivo</i> Development and Long-Term Survival of Engineered Adipose Tissue Depend on <i>In Vitro</i> Precultivation Strategy. Tissue Engineering - Part A, 2008, 14, 275-284.	3.1	45
13	The role of meniscal repair for prevention of early onset of osteoarthritis. Journal of Experimental Orthopaedics, 2018, 5, 10.	1.8	44
14	Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis. International Orthopaedics, 2013, 37, 945-951.	1.9	41
15	Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner. International Orthopaedics, 2013, 37, 153-158.	1.9	37
16	Characterization of esterified hyaluronanâ€gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2009, 91A, 416-427.	4.0	36
17	Tissue Engineering of Large Full-Size Meniscus Defects by a Polyurethane Scaffold: Accelerated Regeneration by Mesenchymal Stromal Cells. Stem Cells International, 2018, 2018, 1-11.	2.5	36
18	Are Applied Growth Factors Able to Mimic the Positive Effects of Mesenchymal Stem Cells on the Regeneration of Meniscus in the Avascular Zone?, BioMed Research International, 2014, 2014, 1-10,	1.9	31

JOHANNES ZELLNER

#	Article	IF	CITATIONS
19	Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid–Gelatin Composite Scaffold. Materials, 2016, 9, 381.	2.9	31
20	Thyroid Hormone-Induced Hypertrophy in Mesenchymal Stem Cell Chondrogenesis Is Mediated by Bone Morphogenetic Protein-4. Tissue Engineering - Part A, 2014, 20, 178-188.	3.1	29
21	Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis. Cells, 2019, 8, 936.	4.1	29
22	Bone Marrow Aspirate Concentrate for the Treatment of Avascular Meniscus Tears in a One-Step Procedure—Evaluation of an In Vivo Model. International Journal of Molecular Sciences, 2019, 20, 1120.	4.1	29
23	Elbow Dislocations: A Review Ranging from Soft Tissue Injuries to Complex Elbow Fracture Dislocations. Advances in Orthopedics, 2013, 2013, 1-11.	1.0	27
24	Clinical and Radiological Regeneration of Large and Deep Osteochondral Defects of the Knee by Bone Augmentation Combined With Matrix-Guided Autologous Chondrocyte Transplantation. American Journal of Sports Medicine, 2017, 45, 3069-3080.	4.2	27
25	Comparison of Clinical Outcome following Cartilage Repair for Patients with Underlying Varus Deformity with or without Additional High Tibial Osteotomy: A Propensity Score–Matched Study Based on the German Cartilage Registry (KnorpelRegister DGOU). Cartilage, 2021, 13, 1206S-1216S.	2.7	25
26	Biomechanical analysis of a transiliac internal fixator. International Orthopaedics, 2011, 35, 1863-1868.	1.9	24
27	Role of mesenchymal stem cells in meniscal repair. Journal of Experimental Orthopaedics, 2014, 1, 12.	1.8	21
28	The effect of leukocyte-reduced platelet-rich plasma on the proliferation of autologous adipose-tissue derived mesenchymal stem cells1. Clinical Hemorheology and Microcirculation, 2016, 61, 599-614.	1.7	21
29	Decision making for concomitant high tibial osteotomy (HTO) in cartilage repair patients based on a nationwide cohort study of 4968 patients. Archives of Orthopaedic and Trauma Surgery, 2020, 140, 1437-1444.	2.4	20
30	Physioxia Expanded Bone Marrow Derived Mesenchymal Stem Cells Have Improved Cartilage Repair in an Early Osteoarthritic Focal Defect Model. Biology, 2020, 9, 230.	2.8	16
31	In Vitro Testing of Scaffolds for Mesenchymal Stem Cell-Based Meniscus Tissue Engineering—Introducing a New Biocompatibility Scoring System. Materials, 2016, 9, 276.	2.9	13
32	Intra-ligamentary autologous conditioned plasma and healing response to treat partial ACL ruptures. Archives of Orthopaedic and Trauma Surgery, 2018, 138, 675-683.	2.4	13
33	Early Functional Rehabilitation after Meniscus Surgery: Are Currently Used Orthopedic Rehabilitation Standards Up to Date?. Rehabilitation Research and Practice, 2020, 2020, 1-8.	0.6	12
34	Does Gender Influence Outcome in Cartilage Repair Surgery? An Analysis of 4,968 Consecutive Patients from the German Cartilage Registry (Knorpel Register DGOU). Cartilage, 2021, 13, 837S-845S.	2.7	11
35	Cell-based treatment options facilitate regeneration of cartilage, ligaments and meniscus in demanding conditions of the knee by a whole joint approach. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 1138-1150.	4.2	11
36	ls the Transplant Quality at the Time of Surgery Adequate for Matrix-guided Autologous Cartilage Transplantation? A Pilot Study. Clinical Orthopaedics and Related Research, 2013, 471, 2852-2861.	1.5	10

JOHANNES ZELLNER

0

#	Article	IF	CITATIONS
37	Partial Anterior Cruciate Ligament Ruptures: Advantages by Intraligament Autologous Conditioned Plasma Injection and Healing Response Technique—Midterm Outcome Evaluation. BioMed Research International, 2018, 2018, 1-9.	1.9	10
38	Arthroplasty of the lunate using bone marrow mesenchymal stromal cells. International Orthopaedics, 2011, 35, 379-387.	1.9	8
39	Leukocyte-reduced platelet-rich plasma increases proliferation of tenocytes treated with prednisolone: a cell cycle analysis. Archives of Orthopaedic and Trauma Surgery, 2017, 137, 1417-1422.	2.4	8
40	Fibronectin Adherent Cell Populations Derived From Avascular and Vascular Regions of the Meniscus Have Enhanced Clonogenicity and Differentiation Potential Under Physioxia. Frontiers in Bioengineering and Biotechnology, 2021, 9, 789621.	4.1	8
41	Expression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs. Stem Cells International, 2016, 2016, 1-9.	2.5	6
42	A Novel Antibacterial Silicone Implant Material with Short- and Long-Term Release of Copper Ions. Plastic and Reconstructive Surgery, 2010, 125, 78e-80e.	1.4	5
43	Autologous chondrocyte implantation for cartilage repair: current perspectives. Orthopedic Research and Reviews, 0, , 149.	1.1	5
44	Current practice of concomitant surgeries in cartilage repair of the femorotibial compartment of the knee: baseline data of 4968 consecutive patients from the German cartilage registry (KnorpelRegister) Tj ETQq0	0 02.¤gBT /	Oværlock 10 T
45	Arthroscopic three dimensional autologous chondrocyte transplantation with navigation-guided cartilage defect size assessment. Archives of Orthopaedic and Trauma Surgery, 2012, 132, 855-860.	2.4	4
46	RFE based chondroplasty in wrist arthroscopy indicates high risk for chrondocytes especially for the bipolar application. BMC Musculoskeletal Disorders, 2015, 16, 6.	1.9	4
47	Do cell based tissue engineering products for meniscus regeneration influence vascularization?. Clinical Hemorheology and Microcirculation, 2017, 67, 125-140.	1.7	4
48	Mesenchymal Stem Cell Based Regenerative Treatment of the Knee: From Basic Science to Clinics. Stem Cells International, 2019, 2019, 1-1.	2.5	4
49	Gene Therapy, Growth Factors, Mesenchymal Cells, New Trends and Future Perspectives. , 2016, , 559-575.		1
50	Cell-Based Cartilage Regeneration. , 2017, , 95-107.		0
51	Return to Play with Degenerative Joint Disease. , 2018, , 471-485.		0
52	Meniscus Regeneration Strategies. Reference Series in Biomedical Engineering, 2021, , 531-554.	0.1	0
53	Cartilage Lesions. , 2016, , 165-171.		0

54 Meniscus Regeneration Strategies. , 2020, , 1-24.