Zhongjin He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1844875/publications.pdf Version: 2024-02-01

		516561	713332
21	1,124	16	21
papers	citations	h-index	g-index
21	21	21	1346
all docs	docs citations	times ranked	citing authors

ZHONCUN HE

#	Article	IF	CITATIONS
1	Molecular insights into the effects of surface property and pore size of non-swelling clay on methane hydrate formation. Fuel, 2022, 311, 122607.	3.4	17
2	Molecular Dynamics Study on the Spontaneous Adsorption of Aromatic Carboxylic Acids to Methane Hydrate Surfaces: Implications for Hydrate Antiagglomeration. Energy & Fuels, 2022, 36, 3628-3639.	2.5	9
3	Facilitating gas hydrate dissociation kinetics and gas migration in clay interlayer by surface cations shielding effects. Fuel, 2022, 318, 123576.	3.4	18
4	Methane Hydrate Formation in the Salty Water Confined in Clay Nanopores: A Molecular Simulation Study. ACS Sustainable Chemistry and Engineering, 2022, 10, 6128-6140.	3.2	20
5	Complex Coupled Effects of Seawater lons and Clay Surfaces on CH ₄ Hydrate Formation in Kaolinite Janus-Nanopores and Bulk Solution. Energy & Fuels, 2022, 36, 5775-5783.	2.5	8
6	Molecular simulations of charged complex fluids: A review. Chinese Journal of Chemical Engineering, 2021, 31, 206-226.	1.7	11
7	Molecular insights into CO2 hydrate formation in the presence of hydrophilic and hydrophobic solid surfaces. Energy, 2021, 234, 121260.	4.5	42
8	The effects of hydrate formation and dissociation on the water-oil interface: Insight into the stability of an emulsion. Fuel, 2020, 266, 116980.	3.4	12
9	Formation of CH ₄ Hydrate in a Mesoporous Metal–Organic Framework MIL-101: Mechanistic Insights from Microsecond Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2019, 10, 7002-7008.	2.1	35
10	Dipeptide Crystals as Reverse Osmosis Membranes for Water Desalination: Atomistic Simulation. Journal of Physical Chemistry C, 2018, 122, 6026-6032.	1.5	13
11	Electric-Field Effects on Ionic Hydration: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2018, 122, 5991-5998.	1.2	36
12	Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon, 2017, 116, 120-127.	5.4	198
13	What are the key factors governing the nucleation of CO ₂ hydrate?. Physical Chemistry Chemical Physics, 2017, 19, 15657-15661.	1.3	75
14	Computational design of 2D functional covalent–organic framework membranes for water desalination. Environmental Science: Water Research and Technology, 2017, 3, 735-743.	1.2	69
15	CH ₄ Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations. Langmuir, 2017, 33, 11956-11967.	1.6	80
16	Efficient ethanol/water separation via functionalized nanoporous graphene membranes: insights from molecular dynamics study. Journal of Materials Science, 2017, 52, 173-184.	1.7	34
17	Molecular Insights into the Nucleation and Growth of CH ₄ and CO ₂ Mixed Hydrates from Microsecond Simulations. Journal of Physical Chemistry C, 2016, 120, 25225-25236.	1.5	84
18	A mechanical nanogate based on a carbon nanotube for reversible control of ion conduction. Nanoscale, 2014, 6, 3686-3694.	2.8	22

ZHONGJIN HE

#	Article	IF	CITATIONS
19	Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon, 2014, 78, 500-509.	5.4	78
20	Bioinspired Graphene Nanopores with Voltage-Tunable Ion Selectivity for Na ⁺ and K ⁺ . ACS Nano, 2013, 7, 10148-10157.	7.3	199
21	Ice-like Water Structure in Carbon Nanotube (8,8) Induces Cationic Hydration Enhancement. Journal of Physical Chemistry C, 2013, 117, 11412-11420.	1.5	64