Juan Carlos FernÃ;ndez Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1844552/publications.pdf

Version: 2024-02-01

36 papers 2,715 citations

759055 12 h-index 23 g-index

40 all docs

40 docs citations

40 times ranked

5128 citing authors

#	Article	IF	CITATIONS
1	Building Suitable Datasets for Soft Computing and Machine Learning Techniques from Meteorological Data Integration: A Case Study for Predicting Significant Wave Height and Energy Flux. Energies, 2021, 14, 468.	1.6	9
2	Potenciando el perfil profesional CientÃfico de Datos mediante dinámicas de competición. Revista De Innovación Y Buenas Prácticas Docentes, 2021, 10, 101-116.	0.1	0
3	Prediction of convective clouds formation using evolutionary neural computation techniques. Neural Computing and Applications, 2020, 32, 13917-13929.	3.2	3
4	Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals. PLoS ONE, 2020, 15, e0227188.	1.1	4
5	Multi-objective evolutionary optimization using the relationship between F1 and accuracy metrics in classification tasks. Applied Intelligence, 2019, 49, 3447-3463.	3.3	12
6	Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm. Sustainability, 2019, 11, 169.	1.6	17
7	Sensitivity versus accuracy in ensemble models of Artificial Neural Networks from Multi-objective Evolutionary Algorithms. Neural Computing and Applications, 2018, 30, 289-305.	3.2	9
8	Efficient fog prediction with multi-objective evolutionary neural networks. Applied Soft Computing Journal, 2018, 70, 347-358.	4.1	22
9	Detection and prediction of segments containing extreme significant wave heights. Ocean Engineering, 2017, 142, 268-279.	1.9	10
10	Hybridization of neural network models for the prediction of Extreme Significant Wave Height segments. , 2016, , .		0
11	Significant wave height and energy flux range forecast with machine learning classifiers. Engineering Applications of Artificial Intelligence, 2015, 43, 44-53.	4.3	55
12	Energy Flux Range Classification by Using a Dynamic Window Autoregressive Model. Lecture Notes in Computer Science, 2015, , 92-102.	1.0	1
13	Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution inÂfinancially compromised farms. Annals of Operations Research, 2014, 219, 187-202.	2.6	1,031
14	Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. Artificial Intelligence in Medicine, 2013, 58, 37-49.	3.8	59
15	Multiobjective Pareto Ordinal Classification for Predictive Microbiology. Advances in Intelligent Systems and Computing, 2013, , 153-162.	0.5	1
16	Multi-objective evolutionary algorithm for donor–recipient decision system in liver transplants. European Journal of Operational Research, 2012, 222, 317-327.	3.5	24
17	Hybrid Multi-objective Machine Learning Classification in Liver Transplantation. Lecture Notes in Computer Science, 2012, , 397-408.	1.0	О
18	Selecting the best artificial neural network model from a multi-objective Differential Evolution Pareto front. , $2011, \ldots$		1

#	Article	IF	Citations
19	Memetic Pareto Evolutionary Artificial Neural Networks to determine growth/no-growth in predictive microbiology. Applied Soft Computing Journal, 2011, 11, 534-550.	4.1	25
20	Memetic evolutionary multi-objective neural network classifier to predict graft survival in liver transplant patients. , $2011, \ldots$		2
21	Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology. Evolutionary Intelligence, 2010, 3, 187-199.	2.3	22
22	On the suitability of Extreme Learning Machine for gene classification using feature selection. , 2010, , .		11
23	Learning Artificial Neural Networks multiclassifiers by evolutionary multiobjective differential evolution guided by statistical distributions. , 2010, , .		1
24	Sensitivity Versus Accuracy in Multiclass Problems Using Memetic Pareto Evolutionary Neural Networks. IEEE Transactions on Neural Networks, 2010, 21, 750-770.	4.8	139
25	Ensemble determination using the TOPSIS decision support system in multi-objective evolutionary neural network classifiers. , 2010, , .		2
26	Hybrid Pareto Differential Evolutionary Artificial Neural Networks to Determined Growth Multi-classes in Predictive Microbiology. Lecture Notes in Computer Science, 2010, , 646-655.	1.0	1
27	MultiLogistic Regression using Initial and Radial Basis Function covariates. , 2009, , .		O
28	Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing, 2009, 72, 2731-2742.	3.5	46
29	KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Computing, 2009, 13, 307-318.	2.1	1,165
30	Hyperbolic Tangent Basis Function Neural Networks Training by Hybrid Evolutionary Programming for Accurate Short-Term Wind Speed Prediction., 2009,,.		13
31	Design of Artificial Neural Networks Using a Memetic Pareto Evolutionary Algorithm Using as Objectives Entropy versus Variation Coefficient. , 2009, , .		O
32	Hybrid Multilogistic Regression by Means of Evolutionary Radial Basis Functions: Application to Precision Agriculture. Lecture Notes in Computer Science, 2009, , 244-251.	1.0	1
33	Feature Selection for Hybrid Neuro-Logistic Regression Applied to Classification of Remote Sensed Data. , 2008, , .		3
34	Memetic Pareto Evolutionary Artificial Neural Networks for the Determination of Growth Limits of Listeria Monocytogenes. , 2008, , .		3
35	Evolutionary learning by a sensitivity-accuracy approach for multi-class problems. , 2008, , .		9
36	Evolutionary Combining of Basis Function Neural Networks for Classification. Lecture Notes in Computer Science, 2007, , 447-456.	1.0	0