## Hayley Fowler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1843974/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015, 5, 424-430.                                                                                | 8.1  | 1,814     |
| 2  | Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 2007, 27, 1547-1578. | 1.5  | 1,733     |
| 3  | Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics, 2014, 52, 522-555.                                                           | 9.0  | 911       |
| 4  | Heavier summer downpours with climate change revealed by weather forecast resolution model.<br>Nature Climate Change, 2014, 4, 570-576.                                               | 8.1  | 561       |
| 5  | Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 2011, 15, 471-504.                | 1.9  | 476       |
| 6  | Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrology and Earth System Sciences, 2004, 8, 47-61. | 1.9  | 430       |
| 7  | Conflicting Signals of Climatic Change in the Upper Indus Basin. Journal of Climate, 2006, 19, 4276-4293.                                                                             | 1.2  | 422       |
| 8  | A daily weather generator for use in climate change studies. Environmental Modelling and Software,<br>2007, 22, 1705-1719.                                                            | 1.9  | 376       |
| 9  | Storylines: an alternative approach to representing uncertainty in physical aspects of climate change.<br>Climatic Change, 2018, 151, 555-571.                                        | 1.7  | 317       |
| 10 | A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. International<br>Journal of Climatology, 2003, 23, 1313-1334.                                     | 1.5  | 293       |
| 11 | Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2021, 2, 107-122.                                                              | 12.2 | 279       |
| 12 | Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?. Bulletin of the American Meteorological Society, 2017, 98, 79-93.               | 1.7  | 253       |
| 13 | Large scale surface–subsurface hydrological model to assess climate change impacts on<br>groundwater reserves. Journal of Hydrology, 2009, 373, 122-138.                              | 2.3  | 229       |
| 14 | Advances in understanding largeâ€scale responses of the water cycle to climate change. Annals of the<br>New York Academy of Sciences, 2020, 1472, 49-75.                              | 1.8  | 226       |
| 15 | Challenges in Quantifying Changes in the Global Water Cycle. Bulletin of the American<br>Meteorological Society, 2015, 96, 1097-1115.                                                 | 1.7  | 212       |
| 16 | Multiâ€model ensemble estimates of climate change impacts on UK seasonal precipitation extremes.<br>International Journal of Climatology, 2009, 29, 385-416.                          | 1.5  | 195       |
| 17 | RainSim: A spatial–temporal stochastic rainfall modelling system. Environmental Modelling and<br>Software, 2008, 23, 1356-1369.                                                       | 1.9  | 192       |
| 18 | Detection of continental-scale intensification of hourly rainfall extremes. Nature Climate Change, 2018, 8, 803-807.                                                                  | 8.1  | 186       |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Super-Clausius–Clapeyron Scaling of Extreme Hourly Convective Precipitation and Its Relation to<br>Large-Scale Atmospheric Conditions. Journal of Climate, 2017, 30, 6037-6052.                       | 1.2 | 179       |
| 20 | Using regional climate model data to simulate historical and future river flows in northwest<br>England. Climatic Change, 2007, 80, 337-367.                                                          | 1.7 | 178       |
| 21 | Estimating change in extreme European precipitation using a multimodel ensemble. Journal of<br>Geophysical Research, 2007, 112, .                                                                     | 3.3 | 173       |
| 22 | Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resources Research, 2003, 39, .                           | 1.7 | 161       |
| 23 | Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions?. Geophysical Research Letters, 2017, 44, 974-983.                              | 1.5 | 161       |
| 24 | New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. Journal of Hydrology, 2005, 300, 212-233.              | 2.3 | 160       |
| 25 | Characterizing Uncertainty of the Hydrologic Impacts of Climate Change. Current Climate Change Reports, 2016, 2, 55-64.                                                                               | 2.8 | 159       |
| 26 | Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nature<br>Climate Change, 2017, 7, 664-670.                                                            | 8.1 | 158       |
| 27 | Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrology and Earth System Sciences, 2010, 14, 1669-1680.                      | 1.9 | 152       |
| 28 | New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 2. Future estimates and use in impact studies. Journal of Hydrology, 2005, 300, 234-251. | 2.3 | 147       |
| 29 | Changes in European drought characteristics projected by the PRUDENCE regional climate models.<br>International Journal of Climatology, 2007, 27, 1595-1610.                                          | 1.5 | 137       |
| 30 | The Value of High-Resolution Met Office Regional Climate Models in the Simulation of Multihourly<br>Precipitation Extremes. Journal of Climate, 2014, 27, 6155-6174.                                  | 1.2 | 130       |
| 31 | Using satellite altimetry data to augment flow estimation techniques on the Mekong River.<br>Hydrological Processes, 2010, 24, 3811-3825.                                                             | 1.1 | 129       |
| 32 | Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation?. Climate Dynamics, 2013, 41, 1475-1495.                                                 | 1.7 | 129       |
| 33 | A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. Journal of Hydrology, 2005, 308, 50-66.                           | 2.3 | 117       |
| 34 | Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nature<br>Geoscience, 2016, 9, 24-28.                                                                            | 5.4 | 112       |
| 35 | Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. Journal of Hydrology, 2008, 361, 10-23.                                                                          | 2.3 | 107       |
| 36 | Realâ€Time Flood Forecasting Based on a Highâ€Performance 2â€D Hydrodynamic Model and Numerical<br>Weather Predictions. Water Resources Research, 2020, 56, e2019WR025583.                            | 1.7 | 103       |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Downscaling transient climate change using a Neyman–Scott Rectangular Pulses stochastic rainfall<br>model. Journal of Hydrology, 2010, 381, 18-32.                                      | 2.3 | 100       |
| 38 | Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes. Geophysical Research Letters, 2018, 45, 12,320.                               | 1.5 | 100       |
| 39 | Implications of changes in seasonal and annual extreme rainfall. Geophysical Research Letters, 2003, 30, .                                                                              | 1.5 | 96        |
| 40 | Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. Journal of Hydrology, 2007, 342, 50-71.                    | 2.3 | 94        |
| 41 | Detecting changes in seasonal precipitation extremes using regional climate model projections:<br>Implications for managing fluvial flood risk. Water Resources Research, 2010, 46, .   | 1.7 | 92        |
| 42 | Characterising flash flood response to intense rainfall and impacts using historical information and gauged data in Britain. Journal of Flood Risk Management, 2018, 11, S121.          | 1.6 | 91        |
| 43 | Modelling the impacts of projected future climate change on water resources in north-west England.<br>Hydrology and Earth System Sciences, 2007, 11, 1115-1126.                         | 1.9 | 88        |
| 44 | Regional climate model data used within the SWURVE project – 1: projected changes in seasonal patterns and estimation of PET. Hydrology and Earth System Sciences, 2007, 11, 1069-1083. | 1.9 | 88        |
| 45 | Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation.<br>Environmental Research Letters, 2015, 10, 054021.                               | 2.2 | 86        |
| 46 | Temperatureâ€extreme precipitation scaling: a twoâ€way causality?. International Journal of Climatology,<br>2018, 38, e1274.                                                            | 1.5 | 82        |
| 47 | A weather-type approach to analysing water resource drought in the Yorkshire region from 1881 to 1998. Journal of Hydrology, 2002, 262, 177-192.                                        | 2.3 | 81        |
| 48 | Increases in summertime concurrent drought and heatwave in Eastern China. Weather and Climate Extremes, 2020, 28, 100242.                                                               | 1.6 | 79        |
| 49 | Precipitation and the North Atlantic Oscillation: a study of climatic variability in northern England.<br>International Journal of Climatology, 2002, 22, 843-866.                      | 1.5 | 77        |
| 50 | Qualityâ€control of an hourly rainfall dataset and climatology of extremes for the <scp>UK</scp> .<br>International Journal of Climatology, 2017, 37, 722-740.                          | 1.5 | 77        |
| 51 | Using probabilistic climate change information from a multimodel ensemble for water resources assessment. Water Resources Research, 2009, 45, .                                         | 1.7 | 76        |
| 52 | Trends in timing and magnitude of flow in the Upper Indus Basin. Hydrology and Earth System Sciences, 2013, 17, 1503-1516.                                                              | 1.9 | 74        |
| 53 | Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resources Research, 2011, 47, .                                           | 1.7 | 73        |
| 54 | An assessment of changes in seasonal and annual extreme rainfall in the UK between 1961 and 2009.<br>International Journal of Climatology, 2013, 33, 1178-1194.                         | 1.5 | 73        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environmental<br>Research Letters, 2019, 14, 125008.                                                                            | 2.2 | 73        |
| 56 | GSDR: A Global Sub-Daily Rainfall Dataset. Journal of Climate, 2019, 32, 4715-4729.                                                                                                                                     | 1.2 | 73        |
| 57 | Modeling the impacts of future climate change on water resources for the Gállego river basin<br>(Spain). Water Resources Research, 2012, 48, .                                                                          | 1.7 | 71        |
| 58 | Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive<br>Fault Database. Natural Hazards Review, 2018, 19, .                                                              | 0.8 | 68        |
| 59 | Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment. Extremes, 2010, 13, 241-267.                                                                   | 0.5 | 66        |
| 60 | Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield. Hydrology and Earth System Sciences, 2012, 16, 4401-4416.                                    | 1.9 | 64        |
| 61 | Hydrological impacts of climate change on the Tejo and Guadiana Rivers. Hydrology and Earth System Sciences, 2007, 11, 1175-1189.                                                                                       | 1.9 | 62        |
| 62 | Strong Intensification of Hourly Rainfall Extremes by Urbanization. Geophysical Research Letters, 2020, 47, e2020GL088758.                                                                                              | 1.5 | 62        |
| 63 | Beyond the downscaling comparison study. International Journal of Climatology, 2007, 27, 1543-1545.                                                                                                                     | 1.5 | 60        |
| 64 | Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate:<br>The Upper Indus Basin. Journal of Hydrology, 2014, 517, 1019-1034.                                            | 2.3 | 60        |
| 65 | Climate change impacts on Yangtze River discharge at the Three Gorges Dam. Hydrology and Earth<br>System Sciences, 2017, 21, 1911-1927.                                                                                 | 1.9 | 59        |
| 66 | The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes. Advances in Science and Research, 0, 15, 117-126.                                         | 1.0 | 59        |
| 67 | Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment.<br>Journal of Contaminant Hydrology, 2012, 127, 47-64.                                                              | 1.6 | 58        |
| 68 | A rule based quality control method for hourly rainfall data and a 1†km resolution gridded hourly rainfall dataset for Great Britain: CEH-GEAR1hr. Journal of Hydrology, 2018, 564, 930-943.                            | 2.3 | 58        |
| 69 | A stochastic rainfall model for the assessment of regional water resource systems under changed climatic condition. Hydrology and Earth System Sciences, 2000, 4, 263-281.                                              | 1.9 | 57        |
| 70 | Integrated Approach to Assess the Resilience of Future Electricity Infrastructure Networks to Climate<br>Hazards. IEEE Systems Journal, 2018, 12, 3169-3180.                                                            | 2.9 | 57        |
| 71 | Towards advancing scientific knowledge of climate change impacts on short-duration rainfall<br>extremes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021,<br>379, 20190542. | 1.6 | 56        |
| 72 | Projected increases in summer and winter UK sub-daily precipitation extremes from high-resolution regional climate models. Environmental Research Letters, 2014, 9, 084019.                                             | 2.2 | 55        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | When Will We Detect Changes in Short-Duration Precipitation Extremes?. Journal of Climate, 2018, 31, 2945-2964.                                                                                                                                        | 1.2 | 55        |
| 74 | Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains. Pest Management Science, 2008, 64, 933-944.                                                                                              | 1.7 | 54        |
| 75 | Objective classification of extreme rainfall regions for the <scp>UK</scp> and updated estimates of trends in regional extreme rainfall. International Journal of Climatology, 2014, 34, 751-765.                                                      | 1.5 | 52        |
| 76 | Climate extremes: progress and future directions. International Journal of Climatology, 2009, 29, 317-319.                                                                                                                                             | 1.5 | 50        |
| 77 | A synthesis of hourly and daily precipitation extremes in different climatic regions. Weather and<br>Climate Extremes, 2019, 26, 100219.                                                                                                               | 1.6 | 50        |
| 78 | A stochastic model for the spatialâ€ŧemporal simulation of nonhomogeneous rainfall occurrence and amounts. Water Resources Research, 2010, 46, .                                                                                                       | 1.7 | 49        |
| 79 | Quasiâ€Stationary Intense Rainstorms Spread Across Europe Under Climate Change. Geophysical<br>Research Letters, 2021, 48, e2020GL092361.                                                                                                              | 1.5 | 49        |
| 80 | Europe-wide precipitation projections at convection permitting scale with the Unified Model. Climate Dynamics, 2020, 55, 409-428.                                                                                                                      | 1.7 | 48        |
| 81 | Understanding rainfall extremes. Nature Climate Change, 2017, 7, 391-393.                                                                                                                                                                              | 8.1 | 47        |
| 82 | Consistent Largeâ€Scale Response of Hourly Extreme Precipitation to Temperature Variation Over Land.<br>Geophysical Research Letters, 2021, 48, e2020GL090317.                                                                                         | 1.5 | 46        |
| 83 | The impact of climate change on extreme precipitation in Sicily, Italy. Hydrological Processes, 2018, 32, 332-348.                                                                                                                                     | 1.1 | 45        |
| 84 | Intensification of short-duration rainfall extremes and implications for flood risk: current state of<br>the art and future directions. Philosophical Transactions Series A, Mathematical, Physical, and<br>Engineering Sciences, 2021, 379, 20190541. | 1.6 | 44        |
| 85 | Incorporating climate change in flood estimation guidance. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190548.                                                                              | 1.6 | 44        |
| 86 | Development of agro-environmental scenarios to support pesticide risk assessment in Europe. Science of the Total Environment, 2008, 407, 574-588.                                                                                                      | 3.9 | 38        |
| 87 | Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions. Atmospheric Research, 2019, 225, 30-44.                                                                                                                             | 1.8 | 37        |
| 88 | Use of radar data for characterizing extreme precipitation at fine scales and short durations.<br>Environmental Research Letters, 2020, 15, 085003.                                                                                                    | 2.2 | 37        |
| 89 | Developing climatic scenarios for pesticide fate modelling in Europe. Environmental Pollution, 2008, 154, 219-231.                                                                                                                                     | 3.7 | 36        |
| 90 | Assessment of Runoff Sensitivity in the Upper Indus Basin to Interannual Climate Variability and<br>Potential Change Using MODIS Satellite Data Products. Mountain Research and Development, 2012, 32,<br>16.                                          | 0.4 | 36        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Projected changes in extreme precipitation over Scotland and Northern England using a high-resolution regional climate model. Climate Dynamics, 2018, 51, 3559-3577.                                                               | 1.7 | 36        |
| 92  | Future climate scenarios and rainfall–runoff modelling in the Upper Gallego catchment (Spain).<br>Environmental Pollution, 2007, 148, 842-854.                                                                                     | 3.7 | 35        |
| 93  | Regional frequency analysis of extreme rainfall in Sicily (Italy). International Journal of Climatology, 2018, 38, e698.                                                                                                           | 1.5 | 35        |
| 94  | Mobility, turnover and storage of pollutants in soils, sediments and waters: achievements and results of the EU project AquaTerra. A review. Agronomy for Sustainable Development, 2009, 29, 161-173.                              | 2.2 | 34        |
| 95  | Developing observational methods to drive future hydrological science: Can we make a start as a community?. Hydrological Processes, 2020, 34, 868-873.                                                                             | 1.1 | 34        |
| 96  | The Karakoram/Western Tibetan vortex: seasonal and year-to-year variability. Climate Dynamics, 2018, 51, 3883-3906.                                                                                                                | 1.7 | 32        |
| 97  | A new precipitation and drought climatology based on weather patterns. International Journal of Climatology, 2018, 38, 630-648.                                                                                                    | 1.5 | 31        |
| 98  | Carbon emission savings and shortâ€ŧerm health care impacts from telemedicine: An evaluation in epilepsy. Epilepsia, 2021, 62, 2732-2740.                                                                                          | 2.6 | 31        |
| 99  | The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model. Environmental Research Letters, 2016, 11, 094024.                                                         | 2.2 | 30        |
| 100 | Effect of temporal aggregation on the estimate of annual maximum rainfall depths for the design of hydraulic infrastructure systems. Journal of Hydrology, 2017, 554, 710-720.                                                     | 2.3 | 30        |
| 101 | Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model. Environmental Research Letters, 2019, 14, 074012.               | 2.2 | 30        |
| 102 | Climate change and epilepsy: Insights from clinical and basic science studies. Epilepsy and Behavior, 2021, 116, 107791.                                                                                                           | 0.9 | 30        |
| 103 | Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190544. | 1.6 | 30        |
| 104 | Assessing the threat of future megadrought in Iberia. International Journal of Climatology, 2017, 37, 5024-5034.                                                                                                                   | 1.5 | 29        |
| 105 | The history of rainfall data time-resolution in a wide variety of geographical areas. Journal of<br>Hydrology, 2020, 590, 125258.                                                                                                  | 2.3 | 29        |
| 106 | Global Scaling of Rainfall With Dewpoint Temperature Reveals Considerable Ocean‣and Difference.<br>Geophysical Research Letters, 2021, 48, e2021GL093798.                                                                          | 1.5 | 29        |
| 107 | Opportunities from Remote Sensing for Supporting Water Resources Management in Village/Valley<br>Scale Catchments in the Upper Indus Basin. Water Resources Management, 2012, 26, 845-871.<br>                                     | 1.9 | 28        |
| 108 | Examination of climate risk using a modified uncertainty matrix framework—Applications in the water sector. Global Environmental Change, 2013, 23, 115-129.                                                                        | 3.6 | 28        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Evaluation of Upper Indus Near-Surface Climate Representation by WRF in the High Asia Refined<br>Analysis. Journal of Hydrometeorology, 2019, 20, 467-487.                                             | 0.7 | 28        |
| 110 | Influence of temporal data aggregation on trend estimation for intense rainfall. Advances in Water Resources, 2018, 122, 304-316.                                                                      | 1.7 | 27        |
| 111 | Reply to comments on "Temperatureâ€extreme precipitation scaling: a twoâ€way causality?â€i International<br>Journal of Climatology, 2018, 38, 4664-4666.                                               | 1.5 | 27        |
| 112 | Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO. Climate Dynamics, 2020, 54, 4823-4839.                                                         | 1.7 | 27        |
| 113 | Large-Scale Predictors for Extreme Hourly Precipitation Events in Convection-Permitting Climate Simulations. Journal of Climate, 2018, 31, 2115-2131.                                                  | 1.2 | 26        |
| 114 | Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States. Climate Dynamics, 2019, 52, 197-208.                                                       | 1.7 | 26        |
| 115 | Toward a definition of Essential Mountain Climate Variables. One Earth, 2021, 4, 805-827.                                                                                                              | 3.6 | 26        |
| 116 | Dry getting drier – The future of transnational river basins in Iberia. Journal of Hydrology: Regional Studies, 2017, 12, 238-252.                                                                     | 1.0 | 25        |
| 117 | Development of a system for automated setup of a physically-based, spatially-distributed hydrological model for catchments in Great Britain. Environmental Modelling and Software, 2018, 108, 102-110. | 1.9 | 24        |
| 118 | A regional frequency analysis of UK subâ€daily extreme precipitation and assessment of their<br>seasonality. International Journal of Climatology, 2018, 38, 4758-4776.                                | 1.5 | 22        |
| 119 | A Detailed Cloud Fraction Climatology of the Upper Indus Basin and Its Implications for Near-Surface<br>Air Temperature*. Journal of Climate, 2015, 28, 3537-3556.                                     | 1.2 | 21        |
| 120 | Contrasting seasonality of storm rainfall and flood runoff in the UK and some implications for rainfall-runoff methods of flood estimation. Hydrology Research, 2019, 50, 1309-1323.                   | 1.1 | 21        |
| 121 | Climate change and summer thermal comfort in China. Theoretical and Applied Climatology, 2019, 137, 1077-1088.                                                                                         | 1.3 | 21        |
| 122 | Quality control of a global hourly rainfall dataset. Environmental Modelling and Software, 2021, 144, 105169.                                                                                          | 1.9 | 21        |
| 123 | New climate change rainfall estimates for sustainable drainage. Proceedings of the Institution of<br>Civil Engineers: Engineering Sustainability, 2017, 170, 214-224.                                  | 0.4 | 20        |
| 124 | UKGrsHP: a UK high-resolution gauge–radar–satellite merged hourly precipitation analysisÂdataset.<br>Climate Dynamics, 2020, 54, 2919-2940.                                                            | 1.7 | 19        |
| 125 | Improving sub-seasonal forecast skill of meteorological drought: a weather pattern approach.<br>Natural Hazards and Earth System Sciences, 2020, 20, 107-124.                                          | 1.5 | 18        |
| 126 | Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources. Earth System Dynamics, 2015, 6, 311-326.                                             | 2.7 | 17        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Adaptation of water resource systems to an uncertain future. Hydrology and Earth System Sciences, 2016, 20, 1869-1884.                                                                                                  | 1.9 | 17        |
| 128 | The integrated project AquaTerra of the EU sixth framework lays foundations for better<br>understanding of river–sediment–soil–groundwater systems. Journal of Environmental Management,<br>2007, 84, 237-243.          | 3.8 | 16        |
| 129 | New hourly extreme precipitation regions and regional annual probability estimates for the <scp>UK</scp> . International Journal of Climatology, 2021, 41, 582-600.                                                     | 1.5 | 16        |
| 130 | Simulating multimodal seasonality in extreme daily precipitation occurrence. Journal of Hydrology, 2016, 537, 117-129.                                                                                                  | 2.3 | 15        |
| 131 | Weather Types and Hourly to Multiday Rainfall Characteristics in Tropical Australia. Journal of Climate, 2019, 32, 3983-4011.                                                                                           | 1.2 | 15        |
| 132 | Historical flash floods in England: New regional chronologies and database. Journal of Flood Risk<br>Management, 2019, 12, .                                                                                            | 1.6 | 15        |
| 133 | A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment,<br>Western Europe. Climatic Change, 2012, 111, 249-277.                                                                 | 1.7 | 14        |
| 134 | Assessing long term flash flooding frequency using historical information. Hydrology Research, 2017, 48, 1-16.                                                                                                          | 1.1 | 14        |
| 135 | Downscaling climate change of water availability, sediment yield and extreme events: Application to a<br>Mediterranean climate basin. International Journal of Climatology, 2019, 39, 2947-2963.                        | 1.5 | 14        |
| 136 | Extreme windstorms and sting jets in convection-permitting climate simulations over Europe. Climate Dynamics, 2022, 58, 2387-2404.                                                                                      | 1.7 | 14        |
| 137 | Knowledge Priorities on Climate Change and Water in the Upper Indus Basin: A Horizon Scanning<br>Exercise to Identify the Top 100 Research Questions in Social and Natural Sciences. Earth's Future,<br>2022, 10, .     | 2.4 | 14        |
| 138 | Downscaling transient climate change with a stochastic weather generator for the Geer catchment,<br>Belgium. Climate Research, 2013, 57, 95-109.                                                                        | 0.4 | 13        |
| 139 | Synoptic‣cale Precursors of Extreme U.K. Summer 3â€Hourly Rainfall. Journal of Geophysical Research<br>D: Atmospheres, 2019, 124, 4477-4489.                                                                            | 1.2 | 13        |
| 140 | Using high-resolution climate change information in water management: a decision-makers'<br>perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,<br>2021, 379, 20200219. | 1.6 | 13        |
| 141 | Rainfall in Iberian transnational basins: a drier future for the Douro, Tagus and Guadiana?. Climatic<br>Change, 2016, 135, 467-480.                                                                                    | 1.7 | 12        |
| 142 | PPDIST, global 0.1Ű daily and 3-hourly precipitation probability distribution climatologies for 1979â $\epsilon$ "2018. Scientific Data, 2020, 7, 302.                                                                  | 2.4 | 12        |
| 143 | Towards Quantifying the Uncertainty in Estimating Observed Scaling Rates. Geophysical Research Letters, 2022, 49, .                                                                                                     | 1.5 | 12        |
| 144 | Atmospheric precursors for intense summer rainfall over the United Kingdom. International Journal of Climatology, 2020, 40, 3849-3867.                                                                                  | 1.5 | 11        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Understanding how changing rainfall may impact on urban drainage systems; lessons from projects in the UK and USA. Water Practice and Technology, 2018, 13, 654-661.                                      | 1.0 | 10        |
| 146 | Thermodynamic controls of the Western Tibetan Vortex on Tibetan air temperature. Climate Dynamics, 2019, 53, 4267-4290.                                                                                   | 1.7 | 10        |
| 147 | Large-scale dynamics have greater role than thermodynamics in driving precipitation extremes over<br>India. Climate Dynamics, 2020, 55, 2603-2614.                                                        | 1.7 | 10        |
| 148 | A historical flash flood chronology for Britain. Journal of Flood Risk Management, 2021, 14, e12721.                                                                                                      | 1.6 | 10        |
| 149 | Climate Change, Water Resources and Pollution in the Ebro Basin: Towards an Integrated Approach.<br>Handbook of Environmental Chemistry, 2010, , 295-329.                                                 | 0.2 | 9         |
| 150 | Weekly to multiâ€month persistence in sets of daily weather patterns over Europe and the North<br>Atlantic Ocean. International Journal of Climatology, 2019, 39, 2041-2056.                              | 1.5 | 9         |
| 151 | Multi-physics ensemble snow modelling in the western Himalaya. Cryosphere, 2020, 14, 1225-1244.                                                                                                           | 1.5 | 9         |
| 152 | Storm types in India: linking rainfall duration, spatial extent and intensity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200137.                | 1.6 | 7         |
| 153 | Water fluxes and their control on the terrestrial carbon balance: Results from a stable isotope study on the Clyde Watershed (Scotland). Applied Geochemistry, 2007, 22, 2684-2694.                       | 1.4 | 6         |
| 154 | A Hydrological Perspective on Interpretation of Available Climate Projections for the Upper Indus Basin. , 2019, , 159-179.                                                                               |     | 6         |
| 155 | Stochastic rainfall modelling for the assessment of urban flood hazard in a changing climate. , 0, , .                                                                                                    |     | 6         |
| 156 | Downscaling climate change of mean climatology and extremes of precipitation and temperature:<br>Application to a Mediterranean climate basin. International Journal of Climatology, 2019, 39, 4985-5005. | 1.5 | 4         |
| 157 | Climate change and epilepsy: Time to take action. Epilepsia Open, 2019, 4, 524-536.                                                                                                                       | 1.3 | 4         |
| 158 | Consequence forecasting: A rational framework for predicting the consequences of approaching storms. Climate Risk Management, 2022, 35, 100412.                                                           | 1.6 | 4         |
| 159 | An Hourly and Multi-Hourly Extreme Precipitation Climatology for the UK and Long-Term Changes in Extremes. , 2014, , .                                                                                    |     | 3         |
| 160 | Assessment of climate pressures on glacier-melt and snowmelt-derived runoff in the Hindu<br>Kush-Karakoram sector of the Upper Indus Basin. , 0, , .                                                      |     | 3         |
| 161 | Analysis of extreme rainfall events under the climatic change. , 2022, , 307-326.                                                                                                                         |     | 3         |
| 162 | Climate models' value. New Scientist, 2008, 201, 16.                                                                                                                                                      | 0.0 | 2         |

| #   | Article                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Hydrological Impacts of Climate Change on the Ebro River Basin. Handbook of Environmental<br>Chemistry, 2010, , 47-75.                                           | 0.2 | 2         |
| 164 | Role of hydrology in managing consequences of a changing global environment. Hydrology Research, 2012, 43, 548-550.                                              | 1.1 | 2         |
| 165 | Mobility, Turnover and Storage of Pollutants in Soils, Sediments and Waters: Achievements and Results of the EU Project AquaTerra - A Review. , 2009, , 857-871. |     | 2         |
| 166 | Detecting Changes in Winter Precipitation Extremes and Fluvial Flood Risk. , 2014, , 578-604.                                                                    |     | 0         |
| 167 | Climate change and climate variability. , 2021, , 53-68.                                                                                                         |     | 0         |
| 168 | Downscaling future wind hazard for SE London using the UKCP09 regional climate model ensemble.<br>Climate Research, 2012, 53, 141-156.                           | 0.4 | 0         |
| 169 | Leading modes of wind field variability over the western Tibet Plateau. Climate Dynamics, 0, , .                                                                 | 1.7 | 0         |