
Randy B Stockbridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1843940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride. Science, 2012, 335, 233-235.	12.6	356
2	Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. Molecular Cell, 2017, 65, 220-230.	9.7	129
3	Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15289-15294.	7.1	125
4	A family of fluoride-specific ion channels with dual-topology architecture. ELife, 2013, 2, e01084.	6.0	110
5	Crystal structures of a double-barrelled fluoride ion channel. Nature, 2015, 525, 548-551.	27.8	105
6	Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. Journal of General Physiology, 2014, 144, 257-261.	1.9	71
7	Guanidinium export is the primal function of SMR family transporters. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3060-3065.	7.1	62
8	The Intrinsic Reactivity of ATP and the Catalytic Proficiencies of Kinases Acting on Glucose, N-Acetylgalactosamine, and Homoserine. Journal of Biological Chemistry, 2009, 284, 22747-22757.	3.4	58
9	Molecular Mechanisms for Bacterial Potassium Homeostasis. Journal of Molecular Biology, 2021, 433, 166968.	4.2	57
10	Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22102-22105.	7.1	49
11	Proof of dual-topology architecture of Fluc Fâ^' channels with monobody blockers. Nature Communications, 2014, 5, 5120.	12.8	47
12	Fâ^'/Clâ^' selectivity in CLCF-type Fâ^'/H+ antiporters. Journal of General Physiology, 2014, 144, 129-136.	1.9	46
13	Fluoride-dependent interruption of the transport cycle of a CLC Clâ^'/H+ antiporter. Nature Chemical Biology, 2013, 9, 721-725.	8.0	39
14	The structural basis of promiscuity in small multidrug resistance transporters. Nature Communications, 2020, 11, 6064.	12.8	35
15	A CLC-type F-/H+ antiporter in ion-swapped conformations. Nature Structural and Molecular Biology, 2018, 25, 601-606.	8.2	32
16	Enhancement of the Rate of Pyrophosphate Hydrolysis by Nonenzymatic Catalysts and by Inorganic Pyrophosphatase. Journal of Biological Chemistry, 2011, 286, 18538-18546.	3.4	30
17	Membrane Exporters of Fluoride Ion. Annual Review of Biochemistry, 2021, 90, 559-579.	11.1	28
18	Two-sided block of a dual-topology F ^{â^'} channel. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5697-5701.	7.1	20

RANDY B STOCKBRIDGE

#	Article	IF	CITATIONS
19	A topologically diverse family of fluoride channels. Current Opinion in Structural Biology, 2017, 45, 142-149.	5.7	18
20	An Interfacial Sodium Ion is an Essential Structural Feature of Fluc Family Fluoride Channels. Journal of Molecular Biology, 2020, 432, 1098-1108.	4.2	17
21	The rate of spontaneous cleavage of the glycosidic bond of adenosine. Bioorganic Chemistry, 2010, 38, 224-228.	4.1	16
22	Cork-in-Bottle Occlusion of Fluoride Ion Channels by Crystallization Chaperones. Structure, 2018, 26, 635-639.e1.	3.3	16
23	In vivo chloride concentrations surge to proteotoxic levels during acid stress. Nature Chemical Biology, 2018, 14, 1051-1058.	8.0	16
24	Phosphate Monoester Hydrolysis in Cyclohexane. Journal of the American Chemical Society, 2009, 131, 18248-18249.	13.7	15
25	Mechanism of single- and double-sided inhibition of dual topology fluoride channels by synthetic monobodies. Journal of General Physiology, 2017, 149, 511-522.	1.9	14
26	The fluoride permeation pathway and anion recognition in Fluc family fluoride channels. ELife, 2021, 10, .	6.0	14
27	Lipid Reconstitution and Recording of Recombinant Ion Channels. Methods in Enzymology, 2015, 556, 385-404.	1.0	13
28	N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of Small Membrane Proteins. Journal of Molecular Biology, 2021, 433, 166909.	4.2	13
29	Crystal structures of bacterial small multidrug resistance transporter EmrE in complex with structurally diverse substrates. ELife, 2022, 11, .	6.0	13
30	The hydrolysis of phosphate diesters in cyclohexane and acetone. Chemical Communications, 2010, 46, 4306.	4.1	11
31	The application of Poisson distribution statistics in ion channel reconstitution to determine oligomeric architecture. Methods in Enzymology, 2021, 652, 321-340.	1.0	8
32	A clearer image of the structure and regulation of bestrophin. Journal of General Physiology, 2018, 150, 1469-1471.	1.9	1
33	Inroads into Membrane Physiology through Transport Nanomachines. Journal of Molecular Biology, 2021, 433, 167101.	4.2	1