## **Pravesh Patel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1843823/publications.pdf Version: 2024-02-01



Οσλνές μ Ολτεί

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 2014, 506, 343-348.                                                                                        | 27.8 | 742       |
| 2  | Progress towards ignition on the National Ignition Facility. Physics of Plasmas, 2013, 20, .                                                                                             | 1.9  | 259       |
| 3  | Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.                                                                                                                  | 27.8 | 233       |
| 4  | Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion<br>Implosions. Physical Review Letters, 2013, 111, 085004.                                     | 7.8  | 215       |
| 5  | Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition<br>Facility. Physical Review Letters, 2018, 120, 245003.                             | 7.8  | 205       |
| 6  | High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition<br>Facility. Physical Review Letters, 2014, 112, 055001.                               | 7.8  | 199       |
| 7  | Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility. Physical Review<br>Letters, 2014, 112, 055002.                                                        | 7.8  | 173       |
| 8  | Three-dimensional simulations of low foot and high foot implosion experiments on the National<br>Ignition Facility. Physics of Plasmas, 2016, 23, .                                      | 1.9  | 162       |
| 9  | The high-foot implosion campaign on the National Ignition Facility. Physics of Plasmas, 2014, 21, .                                                                                      | 1.9  | 149       |
| 10 | Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nature Physics, 2016, 12,<br>800-806.                                                                       | 16.7 | 144       |
| 11 | Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Physics of Plasmas, 2015, 22, .         | 1.9  | 120       |
| 12 | First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum. Physical Review Letters,<br>2015, 114, 175001.                                                                     | 7.8  | 117       |
| 13 | High-density carbon ablator experiments on the National Ignition Facility. Physics of Plasmas, 2014, 21, .                                                                               | 1.9  | 116       |
| 14 | Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium<br>Hohlraums at the National Ignition Facility. Physical Review Letters, 2015, 115, 055001. | 7.8  | 101       |
| 15 | Cryogenic thermonuclear fuel implosions on the National Ignition Facility. Physics of Plasmas, 2012, 19, .                                                                               | 1.9  | 95        |
| 16 | The high velocity, high adiabat, "Bigfoot―campaign and tests of indirect-drive implosion scaling.<br>Physics of Plasmas, 2018, 25, .                                                     | 1.9  | 90        |
| 17 | Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.                                                                              | 16.7 | 87        |
| 18 | High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility. Physical Review Letters, 2018, 121, 135001.                                      | 7.8  | 86        |

PRAVESH PATEL

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Approaching a burning plasma on the NIF. Physics of Plasmas, 2019, 26, .                                                                                                                         | 1.9 | 83        |
| 20 | Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility.<br>Physics of Plasmas, 2014, 21, .                                                           | 1.9 | 81        |
| 21 | Record Energetics for an Inertial Fusion Implosion at NIF. Physical Review Letters, 2021, 126, 025001.                                                                                           | 7.8 | 76        |
| 22 | Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions.<br>Physics of Plasmas, 2019, 26, .                                                                 | 1.9 | 70        |
| 23 | Nuclear imaging of the fuel assembly in ignition experiments. Physics of Plasmas, 2013, 20, 056320.                                                                                              | 1.9 | 65        |
| 24 | Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums. Physics of Plasmas, 2015, 22, 062703.                    | 1.9 | 62        |
| 25 | Development of Improved Radiation Drive Environment for High Foot Implosions at the National<br>Ignition Facility. Physical Review Letters, 2016, 117, 225002.                                   | 7.8 | 61        |
| 26 | Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility. Plasma Physics and Controlled Fusion, 2019, 61, 014033.     | 2.1 | 61        |
| 27 | Integrated modeling of cryogenic layered highfoot experiments at the NIF. Physics of Plasmas, 2016, 23,                                                                                          | 1.9 | 59        |
| 28 | Impact of Localized Radiative Loss on Inertial Confinement Fusion Implosions. Physical Review Letters, 2020, 124, 145001.                                                                        | 7.8 | 58        |
| 29 | Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.<br>Review of Scientific Instruments, 2012, 83, 10E115.                                            | 1.3 | 57        |
| 30 | Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility.<br>Physical Review Letters, 2015, 114, 145004.                                               | 7.8 | 56        |
| 31 | Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Physics of Plasmas, 2021, 28, .                                                                                 | 1.9 | 55        |
| 32 | Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023. | 2.1 | 53        |
| 33 | Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition<br>Facility. Physics of Plasmas, 2020, 27, .                                                     | 1.9 | 50        |
| 34 | 2015, 22, 056314.                                                                                                                                                                                | 1.9 | 49        |
| 35 | Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility. Physical Review E, 2016, 94, 021202.                                     | 2.1 | 49        |
| 36 | The role of hot spot mix in the low-foot and high-foot implosions on the NIF. Physics of Plasmas, 2017, 24, .                                                                                    | 1.9 | 49        |

PRAVESH PATEL

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An analytic asymmetric-piston model for the impact of mode-1 shell asymmetry on ICF implosions.<br>Physics of Plasmas, 2020, 27, .                                                | 1.9 | 49        |
| 38 | On the importance of minimizing "coast-time―in x-ray driven inertially confined fusion implosions.<br>Physics of Plasmas, 2017, 24, .                                             | 1.9 | 47        |
| 39 | Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion. Physics of Plasmas, 2015, 22, 032702.                                                   | 1.9 | 45        |
| 40 | Azimuthal Drive Asymmetry in Inertial Confinement Fusion Implosions on the National Ignition<br>Facility. Physical Review Letters, 2020, 124, 145002.                             | 7.8 | 44        |
| 41 | Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube. Physics of Plasmas, 2020, 27, .                                                               | 1.9 | 41        |
| 42 | Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators. Physics of<br>Plasmas, 2018, 25, .                                                      | 1.9 | 39        |
| 43 | Progress in the indirect-drive National Ignition Campaign. Plasma Physics and Controlled Fusion, 2012, 54, 124026.                                                                | 2.1 | 38        |
| 44 | Resolving hot spot microstructure using x-ray penumbral imaging (invited). Review of Scientific<br>Instruments, 2016, 87, 11E201.                                                 | 1.3 | 38        |
| 45 | Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping. Physics of Plasmas, 2016, 23, 056303.                                | 1.9 | 38        |
| 46 | First beryllium capsule implosions on the National Ignition Facility. Physics of Plasmas, 2016, 23, 056310.                                                                       | 1.9 | 37        |
| 47 | First demonstration of ARC-accelerated proton beams at the National Ignition Facility. Physics of Plasmas, 2019, 26, .                                                            | 1.9 | 34        |
| 48 | Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility. Physics of Plasmas, 2017, 24, .             | 1.9 | 31        |
| 49 | Thermal Temperature Measurements of Inertial Fusion Implosions. Physical Review Letters, 2018, 121, 085001.                                                                       | 7.8 | 31        |
| 50 | Review of hydrodynamic instability experiments in inertially confined fusion implosions on National<br>Ignition Facility. Plasma Physics and Controlled Fusion, 2020, 62, 014007. | 2.1 | 31        |
| 51 | Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Physics of Plasmas, 2016, 23, .      | 1.9 | 27        |
| 52 | Implosion performance of subscale beryllium capsules on the NIF. Physics of Plasmas, 2019, 26, 052707.                                                                            | 1.9 | 26        |
| 53 | Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National<br>Ignition Facility. Physical Review E, 2020, 102, 023210.                 | 2.1 | 25        |
| 54 | Localized mix-induced radiative cooling in a capsule implosion at the National Ignition Facility.<br>Physical Review E, 2020, 101, 033205.                                        | 2.1 | 25        |

PRAVESH PATEL

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Extensions of a classical mechanics "piston-model―for understanding the impact of asymmetry on ICF implosions: The cases of mode 2, mode 2/1 coupling, time-dependent asymmetry, and the relationship to coast-time. Physics of Plasmas, 2022, 29, . | 1.9 | 22        |
| 56 | Hotspot electron temperature from x-ray continuum measurements on the NIF. Review of Scientific Instruments, 2016, 87, 11E534.                                                                                                                       | 1.3 | 21        |
| 57 | A near one-dimensional indirectly driven implosion at convergence ratio 30. Physics of Plasmas, 2018, 25, .                                                                                                                                          | 1.9 | 20        |
| 58 | Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition<br>Facility. Physics of Plasmas, 2020, 27, .                                                                                                       | 1.9 | 20        |
| 59 | Observation of Hydrodynamic Flows in Imploding Fusion Plasmas on the National Ignition Facility.<br>Physical Review Letters, 2021, 127, 125001.                                                                                                      | 7.8 | 20        |
| 60 | Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules. Journal of<br>Physics: Conference Series, 2016, 717, 012013.                                                                                                   | 0.4 | 17        |
| 61 | Update 2015 on Target Fabrication Requirements for NIF Layered Implosions, with Emphasis on Capsule Support and Oxygen Modulations in GDP. Fusion Science and Technology, 2016, 70, 121-126.                                                         | 1.1 | 16        |
| 62 | Deficiencies in compression and yield in x-ray-driven implosions. Physics of Plasmas, 2020, 27, .                                                                                                                                                    | 1.9 | 12        |
| 63 | Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators.<br>Physics of Plasmas, 2020, 27, .                                                                                                                   | 1.9 | 11        |
| 64 | Fuel convergence sensitivity in indirect drive implosions. Physics of Plasmas, 2021, 28, 042705.                                                                                                                                                     | 1.9 | 11        |
| 65 | Experiments to explore the influence of pulse shaping at the National Ignition Facility. Physics of Plasmas, 2020, 27, 112708.                                                                                                                       | 1.9 | 11        |
| 66 | View factor estimation of hot spot velocities in inertial confinement fusion implosions at the<br>National Ignition Facility. Physics of Plasmas, 2020, 27, .                                                                                        | 1.9 | 9         |
| 67 | Model validation for inferred hot-spot conditions in National Ignition Facility experiments. Physics of Plasmas, 2021, 28, .                                                                                                                         | 1.9 | 9         |
| 68 | Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments. Physics of Plasmas, 2016, 23, 072701.                                                      | 1.9 | 8         |
| 69 | A simulation-based model for understanding the time dependent x-ray drive asymmetries and error<br>bars in indirectly driven implosions on the National Ignition Facility. Physics of Plasmas, 2019, 26,<br>062703.                                  | 1.9 | 8         |
| 70 | Principal factors in performance of indirect-drive laser fusion experiments. Physics of Plasmas, 2020, 27, .                                                                                                                                         | 1.9 | 7         |
| 71 | Measurements of enhanced performance in an indirect drive inertial confinement fusion experiment when reducing the contact area of the capsule support. Physics of Plasmas, 2020, 27, .                                                              | 1.9 | 7         |
| 72 | Implementing time resolved electron temperature capability at the NIF using a streak camera. Review of Scientific Instruments, 2018, 89, 10K117.                                                                                                     | 1.3 | 5         |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Modeling the 3-D structure of ignition experiments at the NIF. Physics of Plasmas, 2020, 27, 032706.                                                                           | 1.9 | 4         |
| 74 | Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .                                                                      | 1.9 | 4         |
| 75 | Progress in detailed modelling of low foot and high foot implosion experiments on the National<br>Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012011. | 0.4 | 2         |