Robert B Jackson

List of Publications by Citations

Source: https://exaly.com/author-pdf/1843187/robert-b-jackson-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56,193 236 104 274 h-index g-index citations papers 66,741 10.8 7.74 317 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
274	Global biodiversity scenarios for the year 2100. <i>Science</i> , 2000 , 287, 1770-4	33.3	5858
273	A large and persistent carbon sink in the world's forests. <i>Science</i> , 2011 , 333, 988-93	33.3	3950
272	THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION 2000 , 10, 423-436		2993
271	A global analysis of root distributions for terrestrial biomes. <i>Oecologia</i> , 1996 , 108, 389-411	2.9	2017
270	Maximum rooting depth of vegetation types at the global scale. <i>Oecologia</i> , 1996 , 108, 583-595	2.9	1281
269	A global budget for fine root biomass, surface area, and nutrient contents. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 7362-6	11.5	1044
268	A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	952
267	Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. <i>Journal of Ecology</i> , 2002 , 90, 480-494	6	922
266	Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8172-6	11.5	855
265	Trading water for carbon with biological carbon sequestration. <i>Science</i> , 2005 , 310, 1944-7	33.3	851
264	Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. <i>Nature Climate Change</i> , 2020 , 10, 647-653	21.4	842
263	Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 2000, 147, 13-31	9.8	800
262	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838	10.5	776
261	Ecosystem carbon loss with woody plant invasion of grasslands. <i>Nature</i> , 2002 , 418, 623-6	50.4	755
260	PLANT COMPETITION UNDERGROUND. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 1997 , 28, 545-570		735
259	Effects of afforestation on water yield: a global synthesis with implications for policy. <i>Global Change Biology</i> , 2005 , 11, 1565-1576	11.4	692
258	Biophysical and economic limits to negative CO2 emissions. <i>Nature Climate Change</i> , 2016 , 6, 42-50	21.4	684

(2020-2001)

257	The distribution of soil nutrients with depth: Global patterns and the imprint of plants. <i>Biogeochemistry</i> , 2001 , 53, 51-77	3.8	682
256	THE GLOBAL BIOGEOGRAPHY OF ROOTS. <i>Ecological Monographs</i> , 2002 , 72, 311-328	9	668
255	The global methane budget 2000\(\mathbb{Q}\)012. Earth System Science Data, 2016, 8, 697-751	10.5	641
254	Global Carbon Budget 2017. Earth System Science Data, 2018 , 10, 405-448	10.5	614
253	Stomatal responses to increased CO2: implications from the plant to the global scale. <i>Plant, Cell and Environment</i> , 1995 , 18, 1214-1225	8.4	596
252	WATER IN A CHANGING WORLD 2001 , 11, 1027-1045		563
251	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340	10.5	533
250	ECOHYDROLOGICAL IMPLICATIONS OF WOODY PLANT ENCROACHMENT. <i>Ecology</i> , 2005 , 86, 308-319	4.6	500
249	ADAPTIVE VARIATION IN THE VULNERABILITY OF WOODY PLANTS TO XYLEM CAVITATION. <i>Ecology</i> , 2004 , 85, 2184-2199	4.6	484
248	Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter.		
77.	Ecological Monographs, 2010 , 80, 89-106	9	481
247	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES. <i>Ecology</i> , 2004 , 85, 2380-2389	9 4.6	481 468
	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES.		468
247	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES. <i>Ecology</i> , 2004 , 85, 2380-2389	4.6	468
247 246	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES. <i>Ecology</i> , 2004 , 85, 2380-2389 The Global Methane Budget 2000\(\textit{D}\)017. <i>Earth System Science Data</i> , 2020 , 12, 1561-1623	4.6	468
247 246 245	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES. <i>Ecology</i> , 2004 , 85, 2380-2389 The Global Methane Budget 2000\(\textit{Z}\)017. <i>Earth System Science Data</i> , 2020 , 12, 1561-1623 The global stoichiometry of litter nitrogen mineralization. <i>Science</i> , 2008 , 321, 684-6 Root water uptake and transport: using physiological processes in global predictions. <i>Trends in</i>	4.6	468 463 432
247 246 245	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES. <i>Ecology</i> , 2004 , 85, 2380-2389 The Global Methane Budget 2000\(\overline{D}\)017. <i>Earth System Science Data</i> , 2020 , 12, 1561-1623 The global stoichiometry of litter nitrogen mineralization. <i>Science</i> , 2008 , 321, 684-6 Root water uptake and transport: using physiological processes in global predictions. <i>Trends in Plant Science</i> , 2000 , 5, 482-8 The Structure, Distribution, and Biomass of the World's Forests. <i>Annual Review of Ecology</i> ,	4.6 10.5 33.3 13.1	468 463 432 431
247 246 245 244 243	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES. <i>Ecology</i> , 2004 , 85, 2380-2389 The Global Methane Budget 2000\(\textit{D}\)017. <i>Earth System Science Data</i> , 2020 , 12, 1561-1623 The global stoichiometry of litter nitrogen mineralization. <i>Science</i> , 2008 , 321, 684-6 Root water uptake and transport: using physiological processes in global predictions. <i>Trends in Plant Science</i> , 2000 , 5, 482-8 The Structure, Distribution, and Biomass of the World's Forests. <i>Annual Review of Ecology</i> , <i>Evolution, and Systematics</i> , 2013 , 44, 593-622 Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea,	4.6 10.5 33.3 13.1	468 463 432 431 419

239	Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11250-5	11.5	389
238	Hydrologic regulation of plant rooting depth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10572-10577	11.5	365
237	Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 11961-6	11.5	363
236	MEETING ECOLOGICAL AND SOCIETAL NEEDS FOR FRESHWATER 2002 , 12, 1247-1260		360
235	Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. <i>Ecological Monographs</i> , 2012 , 82, 205-220	9	346
234	Geostatistical Patterns of Soil Heterogeneity Around Individual Perennial Plants. <i>Journal of Ecology</i> , 1993 , 81, 683	6	343
233	The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2017 , 48, 419-445	13.5	329
232	Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO\(\textit{LEcology Letters}\), 2011, 14, 349-57	10	323
231	A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation 2009 , 19, 2228-41		313
230	Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 14076-81	11.5	309
229	Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 14014-9	11.5	303
228	Revised calibration of the MBTIIBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 96, 215-229	5.5	298
227	Root dynamics and global change: seeking an ecosystem perspective. <i>New Phytologist</i> , 2000 , 147, 3-12	9.8	286
226	The Environmental Costs and Benefits of Fracking. <i>Annual Review of Environment and Resources</i> , 2014 , 39, 327-362	17.2	274
225	A synthesis of current knowledge on forests and carbon storage in the United States 2011 , 21, 1902-24		272
224	A comprehensive quantification of global nitrous oxide sources and sinks. <i>Nature</i> , 2020 , 586, 248-256	50.4	270
223	Protecting climate with forests. Environmental Research Letters, 2008, 3, 044006	6.2	264
222	Nonlinear grassland responses to past and future atmospheric CO(2). <i>Nature</i> , 2002 , 417, 279-82	50.4	264

(2015-1996)

221	Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. <i>Oecologia</i> , 1996 , 108, 503-511	2.9	262
220	BELOWGROUND CONSEQUENCES OF VEGETATION CHANGE AND THEIR TREATMENT IN MODELS 2000 , 10, 470-483		253
219	Toward more realistic projections of soil carbon dynamics by Earth system models. <i>Global Biogeochemical Cycles</i> , 2016 , 30, 40-56	5.9	251
218	Mapping the global distribution of deep roots in relation to climate and soil characteristics. <i>Geoderma</i> , 2005 , 126, 129-140	6.7	238
217	Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. <i>Marine and Petroleum Geology</i> , 2014 , 56, 239-254	4.7	235
216	Pervasive shifts in forest dynamics in a changing world. <i>Science</i> , 2020 , 368,	33.3	227
215	Ecosystem rooting depth determined with caves and DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 11387-92	11.5	211
214	Key indicators to track current progress and future ambition of the Paris Agreement. <i>Nature Climate Change</i> , 2017 , 7, 118-122	21.4	210
213	Biophysical considerations in forestry for climate protection. <i>Frontiers in Ecology and the Environment</i> , 2011 , 9, 174-182	5.5	209
212	Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. <i>Nature</i> , 2018 , 553, 194-198	50.4	204
211	Variation in xylem structure and function in stems and roots of trees to 20Im depth. <i>New Phytologist</i> , 2004 , 163, 507-517	9.8	199
2 10	Re-assessment of plant carbon dynamics at the Duke free-air CO(2) enrichment site: interactions of atmospheric [CO(2)] with nitrogen and water availability over stand development. <i>New Phytologist</i> , 2010 , 185, 514-28	9.8	197
209	CO alters water use, carbon gain, and yield for the dominant species in a natural grassland. <i>Oecologia</i> , 1994 , 98, 257-262	2.9	197
208	The growing role of methane in anthropogenic climate change. <i>Environmental Research Letters</i> , 2016 , 11, 120207	6.2	190
207	Commentary: Carbon Metabolism of the Terrestrial Biosphere: A Multitechnique Approach for Improved Understanding. <i>Ecosystems</i> , 2000 , 3, 115-130	3.9	189
206	Opportunities and barriers to pumped-hydro energy storage in the United States. <i>Renewable and Sustainable Energy Reviews</i> , 2011 , 15, 839-844	16.2	187
205	Global patterns of terrestrial nitrogen and phosphorus limitation. <i>Nature Geoscience</i> , 2020 , 13, 221-226	18.3	184
204	Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 112 1941-6	11.5	173

203	DEFINING A PLANT'S BELOWGROUND ZONE OF INFLUENCE. <i>Ecology</i> , 2003 , 84, 2313-2321	4.6	168
202	Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. <i>Global Biogeochemical Cycles</i> , 2006 , 20, n/a-n/a	5.9	164
201	Global controls of forest line elevation in the northern and southern hemispheres. <i>Global Ecology and Biogeography</i> , 2000 , 9, 253-268	6.1	160
200	Groundwater use and salinization with grassland afforestation. <i>Global Change Biology</i> , 2004 , 10, 1299-1	3/11/24	155
199	Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. <i>Plant, Cell and Environment,</i> 2006 , 29, 571-83	8.4	151
198	From icy roads to salty streams. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 14487-8	11.5	145
197	Mapping urban pipeline leaks: methane leaks across Boston. Environmental Pollution, 2013, 173, 1-4	9.3	143
196	Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 20438-20446	11.5	142
195	Air impacts of increased natural gas acquisition, processing, and use: a critical review. <i>Environmental Science & Environmental Science & Environment</i>	10.3	138
194	ECOHYDROLOGICAL CONTROL OF DEEP DRAINAGE IN ARID AND SEMIARID REGIONS. <i>Ecology</i> , 2005 , 86, 277-287	4.6	136
193	Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. <i>Ecology</i> , 2009 , 90, 3352-66	4.6	133
192	Climate-driven risks to the climate mitigation potential of forests. <i>Science</i> , 2020 , 368,	33.3	131
191	Natural gas pipeline leaks across Washington, DC. <i>Environmental Science & Damp; Technology</i> , 2014 , 48, 2051-8	10.3	130
190	Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands. <i>Oecologia</i> , 1998 , 115, 460-462	2.9	127
189	Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. <i>Nature Climate Change</i> , 2019 , 9, 684-689	21.4	125
188	Earth Stewardship: science for action to sustain the human-earth system. <i>Ecosphere</i> , 2011 , 2, art89	3.1	121
187	Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. <i>Plant, Cell and Environment,</i> 2010 , 33, 2132-48	8.4	121
186	Leaf isoprene emission rate as a function of atmospheric CO2 concentration. <i>Global Change Biology</i> , 2009 , 15, 1189-1200	11.4	121

185	Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae). <i>American Journal of Botany</i> , 2008 , 95, 299-314	2.7	120
184	Global energy growth is outpacing decarbonization. <i>Environmental Research Letters</i> , 2018 , 13, 120401	6.2	119
183	Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. <i>Applied Geochemistry</i> , 2013 , 35, 207-220	3.5	116
182	Biophysical forcings of land-use changes from potential forestry activities in North America. <i>Ecological Monographs</i> , 2014 , 84, 329-353	9	111
181	Warning signs for stabilizing global CO 2 emissions. <i>Environmental Research Letters</i> , 2017 , 12, 110202	6.2	111
180	Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. <i>Global Change Biology</i> , 2019 , 25, 640-659	11.4	111
179	Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. <i>Water Resources Research</i> , 2005 , 41,	5.4	110
178	Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3 © 4 grassland. <i>Global Change Biology</i> , 2001 , 7, 693-707	11.4	110
177	Impact to Underground Sources of Drinking Water and Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion, Wyoming, Field. <i>Environmental Science & Technology</i> , 2016 , 50, 4524-36	10.3	109
176	Risks to forest carbon offset projects in a changing climate. <i>Forest Ecology and Management</i> , 2009 , 257, 2209-2216	3.9	108
175	A Global Analysis of Groundwater Recharge for Vegetation, Climate, and Soils. <i>Vadose Zone Journal</i> , 2012 , 11,	2.7	103
174	Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13184-9	11.5	101
173	New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. <i>Environmental Science & Environmental Science &</i>	10.3	100
172	Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. <i>Environmental Research Letters</i> , 2020 , 15, 071002	6.2	99
171	Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. <i>Global Change Biology</i> , 2012 , 18, 3237-3251	11.4	95
170	Research priorities for negative emissions. <i>Environmental Research Letters</i> , 2016 , 11, 115007	6.2	95
169	Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. <i>Global Change Biology</i> , 2015 , 21, 3246-66	11.4	92
168	The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 208, 302-334	5.5	91

167	Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. <i>Plant, Cell and Environment</i> , 2002 , 25, 557-566	8.4	91
166	The COVID-19 lockdowns: a window into the Earth System. <i>Nature Reviews Earth & Environment</i> , 2020 , 1, 470-481	30.2	90
165	Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 3103-12	4.8	87
164	Identification and characterization of high methane-emitting abandoned oil and gas wells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13636-1364	1 ^{11.5}	83
163	The evolution of Devonian hydrocarbon gases in shallow aquifers of the northern Appalachian Basin: Insights from integrating noble gas and hydrocarbon geochemistry. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 170, 321-355	5.5	83
162	Sheep Grazing Decreases Organic Carbon and Nitrogen Pools in the Patagonian Steppe: Combination of Direct and Indirect Effects. <i>Ecosystems</i> , 2009 , 12, 686-697	3.9	83
161	Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. <i>Geophysical Research Letters</i> , 2002 , 29, 9-1-9-4	4.9	81
160	Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. <i>Plant, Cell and Environment</i> , 2018 , 41, 576-588	8.4	79
159	Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape 2011 , 21, 678-94		79
158	Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. <i>Physiologia Plantarum</i> , 2006 , 127, 374-382	4.6	79
157	Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. <i>Global Change Biology</i> , 2005 , 11, 1828-1836	11.4	79
156	Ecohydrology in a human-dominated landscape. <i>Ecohydrology</i> , 2009 , 2, 383-389	2.5	78
155	A trade-off between plant and soil carbon storage under elevated CO. <i>Nature</i> , 2021 , 591, 599-603	50.4	78
154	FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions. <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, 2607-2632	6.1	77
153	The integrity of oil and gas wells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10902-3	11.5	76
152	Persistent fossil fuel growth threatens the Paris Agreement and planetary health. <i>Environmental Research Letters</i> , 2019 , 14, 121001	6.2	76
151	Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. <i>Plant, Cell and Environment,</i> 2007 , 30, 1411-21	8.4	74
150	Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. <i>Global Biogeochemical Cycles</i> , 2009 , 23, n/a-n/a	5.9	73

(2004-2018)

149	The Global N2O Model Intercomparison Project. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 1231-1251	6.1	71	
148	Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites. <i>Environmental Science & Environmental Sci</i>	10.3	70	
147	Variability and quasi-decadal changes in the methane budget over the period 2000\(\textit{\textit{2}}\)000\(\textit{2}\)0012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161	6.8	69	
146	Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. <i>Global Change Biology</i> , 2008 , 14, 2910-2922	11.4	69	
145	Simulating the Earth system response to negative emissions. <i>Environmental Research Letters</i> , 2016 , 11, 095012	6.2	69	
144	Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. <i>Environmental Microbiology</i> , 2012 , 14, 1145-58	5.2	68	
143	Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates. <i>Soil Biology and Biochemistry</i> , 2012 , 50, 66-76	7.5	67	
142	Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till corn and soybean crops. <i>Soil Biology and Biochemistry</i> , 2015 , 85, 22-30	7.5	67	
141	Elevated CO enhances resprouting of a tropical savanna tree. <i>Oecologia</i> , 2000 , 123, 312-317	2.9	66	
140	Fossil CO2 emissions in the post-COVID-19 era. <i>Nature Climate Change</i> , 2021 , 11, 197-199	21.4	62	
139	Global Carbon Budget 2017		60	
138	A global meta-analysis of soil phosphorus dynamics after afforestation. <i>New Phytologist</i> , 2017 , 213, 181	-9.% 2	58	
137	The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	57	
136	Global and regional drivers of land-use emissions in 1961-2017. <i>Nature</i> , 2021 , 589, 554-561	50.4	57	
135	Flexibility and intensity of global water use. <i>Nature Sustainability</i> , 2019 , 2, 515-523	22.1	55	
134	Estimation of long-term basin scale evapotranspiration from streamflow time series. <i>Water Resources Research</i> , 2010 , 46,	5.4	52	
133	Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. <i>Plant, Cell and Environment</i> , 2008 , 31, 1663-72	8.4	52	
132	Curbing the U.S. carbon deficit. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 15827-9	11.5	52	

131	Ecosystem impacts of geoengineering: a review for developing a science plan. <i>Ambio</i> , 2012 , 41, 350-69	6.5	51
130	Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient. <i>Global Biogeochemical Cycles</i> , 2008 , 22, n/a-n/a	5.9	51
129	Priming of soil organic carbon decomposition induced by corn compared to soybean crops. <i>Soil Biology and Biochemistry</i> , 2014 , 75, 273-281	7.5	50
128	Regional feedbacks among fire, climate, and tropical deforestation. <i>Journal of Geophysical Research</i> , 2003 , 108,		50
127	Groundwater and soil chemical changes under phreatophytic tree plantations. <i>Journal of Geophysical Research</i> , 2007 , 112,		47
126	Water Use and Management in the Bakken Shale Oil Play in North Dakota. <i>Environmental Science & Environmental Science</i>	10.3	47
125	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005	10.5	47
124	Responses of soil cellulolytic fungal communities to elevated atmospheric COlare complex and variable across five ecosystems. <i>Environmental Microbiology</i> , 2011 , 13, 2778-93	5.2	46
123	Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition in experimental mesocosms. <i>Global Change Biology</i> , 2008 , 14, 1113-1124	11.4	45
122	Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. <i>Earth System Science Data</i> , 2019 , 11, 1263-1289	10.5	45
121	Salinity of deep groundwater in California: Water quantity, quality, and protection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7768-73	11.5	43
120	Geophysical subsurface imaging for ecological applications. <i>New Phytologist</i> , 2014 , 201, 1170-5	9.8	43
119	Atmospheric CO2 and soil extracellular enzyme activity: a meta-analysis and CO2 gradient experiment. <i>Ecosphere</i> , 2011 , 2, art96	3.1	43
118	Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity. <i>Nature Climate Change</i> , 2012 , 2, 742-746	21.4	42
117	Future land use and land cover influences on regional biogenic emissions and air quality in the United States. <i>Atmospheric Environment</i> , 2009 , 43, 5771-5780	5.3	42
116	Data-driven estimates of global nitrous oxide emissions from croplands. <i>National Science Review</i> , 2020 , 7, 441-452	10.8	42
115	Natural Gas Pipeline Replacement Programs Reduce Methane Leaks and Improve Consumer Safety. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 286-291	11	41
114	Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L <i>Global Change Biology</i> , 2010 , 16, 1046-1056	11.4	41

113	Opportunities and Constraints for Forest Climate Mitigation. <i>BioScience</i> , 2010 , 60, 698-707	5.7	40
112	On the relationship between stomatal characters and atmospheric CO2. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	40
111	Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. <i>Global Biogeochemical Cycles</i> , 2019 , 33, 1475-1512	5.9	40
110	Research frontiers in the analysis of coupled biogeochemical cycles. <i>Frontiers in Ecology and the Environment</i> , 2011 , 9, 74-80	5.5	39
109	Root production and demography in a california annual grassland under elevated atmospheric carbon dioxide. <i>Global Change Biology</i> , 2002 , 8, 841-850	11.4	39
108	Quantifying drought-induced tree mortality in the open canopy woodlands of central Texas. <i>Remote Sensing of Environment</i> , 2016 , 181, 54-64	13.2	38
107	Ecosystem water fluxes for two grasslands in elevated CO: a modeling analysis. <i>Oecologia</i> , 1998 , 113, 537-546	2.9	36
106	GENETIC VARIANCE AND COVARIANCE FOR PHYSIOLOGICAL TRAITS IN LOBELIA:ARE THERE CONSTRAINTS ON ADAPTIVE EVOLUTION?. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 826-837	3.8	36
105	Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale 15N study. <i>Global Change Biology</i> , 2011 , 17, 3338-3350	11.4	35
104	Inhibition of Nitrification Alters Carbon Turnover in the Patagonian Steppe. <i>Ecosystems</i> , 2006 , 9, 1257-1	12565	35
103	Primary Productivity and Water Balance of Grassland Vegetation on Three Soils in a Continuous CO2 Gradient: Initial Results from the Lysimeter CO2 Gradient Experiment. <i>Ecosystems</i> , 2009 , 12, 699-7	149	34
102	Effects of elevated atmospheric carbon dioxide on amino acid and NH4+-N cycling in a temperate pine ecosystem. <i>Global Change Biology</i> , 2007 , 13, 1950-1959	11.4	34
101	Responses of tropical native and invader C4 grasses to water stress, clipping and increased atmospheric CO2 concentration. <i>Oecologia</i> , 2005 , 145, 522-32	2.9	32
100	Role of aquaporin activity in regulating deep and shallow root hydraulic conductance during extreme drought. <i>Trees - Structure and Function</i> , 2014 , 28, 1323-1331	2.6	31
99	Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene-and non-isoprene-emitting poplars. <i>New Phytologist</i> , 2013 , 200, 534-546	9.8	31
98	Reply to Saba and Orzechowski and Schon: Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E665-E666	11.5	31
97	Stream acidification and base cation losses with grassland afforestation. <i>Water Resources Research</i> , 2008 , 44,	5.4	30
96	Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000\(\textbf{Q} 016 \) period. Atmospheric Chemistry and Physics, 2019 , 19, 13701-1.	3 6 83	30

95	Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland. <i>Plant, Cell and Environment</i> , 2003 , 26, 1297-1306	8.4	29
94	Hydrologic resilience and Amazon productivity. <i>Nature Communications</i> , 2017 , 8, 387	17.4	28
93	Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. <i>Science Advances</i> , 2021 , 7,	14.3	28
92	Root responses along a subambient to elevated CO2 gradient in a C3 © 4 grassland. <i>Global Change Biology</i> , 2010 , 16, 454-468	11.4	26
91	Structural and Hydrogeological Controls on Hydrocarbon and Brine Migration into Drinking Water Aquifers in Southern New York. <i>Ground Water</i> , 2018 , 56, 225-244	2.4	25
90	Impacts of climate change drivers on C4 grassland productivity: scaling driver effects through the plant community. <i>Journal of Experimental Botany</i> , 2014 , 65, 3415-24	7	25
89	Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas. <i>Global Change Biology</i> , 2017 , 23, 5120-5135	11.4	25
88	Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 7364-77	4.8	25
87	Moving toward Net-Zero Emissions Requires New Alliances for Carbon Dioxide Removal. <i>One Earth</i> , 2020 , 3, 145-149	8.1	24
86	FLUXNET-CH₄: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. <i>Earth System Science Data</i> , 2021 , 13, 3607-3689	10.5	23
85	Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change. <i>Climatic Change</i> , 2001 , 51, 449-473	4.5	22
84	THE GLOBAL BIOGEOGRAPHY OF ROOTS 2002 , 72, 311		21
83	Agricultural acceleration of soil carbonate weathering. <i>Global Change Biology</i> , 2020 , 26, 5988-6002	11.4	20
82	Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions. <i>Plant and Soil</i> , 2016 , 409, 99-116	4.2	20
81	Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. <i>Ecological Monographs</i> , 2020 , 90, e01409	9	19
80	Accounting for landscape heterogeneity improves spatial predictions of tree vulnerability to drought. <i>New Phytologist</i> , 2018 , 220, 132-146	9.8	19
79	The Global Methane Budget 2000🛭 017		19
78	Quantification of global and national nitrogen budgets for crop production. <i>Nature Food</i> ,	14.4	19

(2021-2020)

77	Opportunities and challenges in using remaining carbon budgets to guide climate policy. <i>Nature Geoscience</i> , 2020 , 13, 769-779	18.3	18	
76	Aerial Interyear Comparison and Quantification of Methane Emissions Persistence in the Bakken Formation of North Dakota, USA. <i>Environmental Science & Environmental Science &</i>	10.3	17	
75	Assessing interactive responses in litter decomposition in mixed species litter. <i>Plant and Soil</i> , 2009 , 314, 263-271	4.2	17	
74	Climate change extremes and photovoltaic power output. <i>Nature Sustainability</i> , 2021 , 4, 270-276	22.1	16	
73	Decadal changes in fire frequencies shift tree communities and functional traits. <i>Nature Ecology and Evolution</i> , 2021 , 5, 504-512	12.3	16	
72	Soil carbon responses to past and future CO2 in three Texas prairie soils. <i>Soil Biology and Biochemistry</i> , 2015 , 83, 66-75	7.5	15	
71	The Global Methane Budget: 2000\(\mathbb{Z}\)012		15	
70	Advancing ecohydrology in the 21st century: A convergence of opportunities. <i>Ecohydrology</i> , 2020 , 13, e2208	2.5	14	
69	Shallow groundwater quality and geochemistry in the Fayetteville Shale gas-production area, north-central Arkansas, 2011. <i>USGS Scientific Investigations Report</i> ,		14	
68	Regional trends and drivers of the global methane budget. <i>Global Change Biology</i> , 2022 , 28, 182-200	11.4	14	
67	The landscape of soil carbon data: Emerging questions, synergies and databases. <i>Progress in Physical Geography</i> , 2019 , 43, 707-719	3.5	13	
66	Assessing the potential of wildfires as a sustainable bioenergy opportunity. GCB Bioenergy, 2012, 4, 634	4- <u>6.</u> 61	12	
65	Measuring uncertainty in estimates of biodiversity loss: The example of biodiversity intactness variance. <i>Biological Conservation</i> , 2008 , 141, 1091-1094	6.2	12	
64	Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9525-9546	6.8	12	
63	State of knowledge about energy development impacts on North American rangelands: An integrative approach. <i>Journal of Environmental Management</i> , 2016 , 180, 1-9	7.9	12	
62	Refining national greenhouse gas inventories. <i>Ambio</i> , 2020 , 49, 1581-1586	6.5	11	
61	Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. <i>Forest Ecology and Management</i> , 2014 , 331, 71-78	3.9	11	
60	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. <i>Global Change Biology</i> , 2021 , 27, 3582-3604	11.4	11	

59	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. <i>Nature Ecology and Evolution</i> , 2021 , 5, 1123-1134	12.3	11
58	Soil organic carbon accumulation rates on Mediterranean abandoned agricultural lands. <i>Science of the Total Environment</i> , 2021 , 759, 143535	10.2	11
57	Focus on negative emissions. Environmental Research Letters, 2017, 12, 110201	6.2	10
56	Substantial hysteresis in emergent temperature sensitivity of global wetland CH emissions. <i>Nature Communications</i> , 2021 , 12, 2266	17.4	10
55	Atmospheric methane removal: a research agenda. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20200454	3	10
54	Deep groundwater quality in the southwestern United States. <i>Environmental Research Letters</i> , 2019 , 14, 034004	6.2	9
53	Pre-drilling background groundwater quality in the Deep River Triassic Basin of central North Carolina, USA. <i>Applied Geochemistry</i> , 2015 , 60, 3-13	3.5	9
52	Reply to Davies: Hydraulic fracturing remains a possible mechanism for observed methane contamination of drinking water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E872-E872	11.5	9
51	Methane Emissions from Abandoned Oil and Gas Wells in California. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 14617-14626	10.3	9
50	Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. <i>Global Change Biology</i> , 2021 , 27, 3810-3823	11.4	9
49	Methane removal and the proportional reductions in surface temperature and ozone. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20210104	3	9
48	Plant community change mediates the response of foliar (115)N to CO 2 enrichment in mesic grasslands. <i>Oecologia</i> , 2015 , 178, 591-601	2.9	8
47	The need to protect fresh and brackish groundwater resources during unconventional oil and gas development. <i>Current Opinion in Environmental Science and Health</i> , 2018 , 3, 1-7	8.1	8
46	Geochemical evidence for fugitive gas contamination and associated water quality changes in drinking-water wells from Parker County, Texas. <i>Science of the Total Environment</i> , 2021 , 780, 146555	10.2	8
45	Tunable laser-based detection of benzene using spectrally narrow absorption features. <i>Applied Physics B: Lasers and Optics</i> , 2019 , 125, 1	1.9	7
44	Potential impacts of hydraulic fracturing for oil and gas on drinking water resources. <i>Ground Water</i> , 2015 , 53, 19-21	2.4	7
43	Methane and NO Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes <i>Environmental Science & Environmental Science & Environm</i>	10.3	7
42	MEETING ECOLOGICAL AND SOCIETAL NEEDS FOR FRESHWATER 2002 , 12, 1247		7

(2021-2016)

41	Canopy foliation and area as predictors of mortality risk from episodic drought for individual trees of Ashe juniper. <i>Plant Ecology</i> , 2016 , 217, 1105-1114	1.7	7
40	CO enrichment and soil type additively regulate grassland productivity. <i>New Phytologist</i> , 2019 , 222, 183	3-9.\$2	7
39	Quantifying Methane Emissions from Natural Gas Water Heaters. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 5737-5745	10.3	7
38	Ten new insights in climate science 2020 la horizon scan. Global Sustainability, 2021, 4,	5.4	7
37	Fire effects on the persistence of soil organic matter and long-term carbon storage. <i>Nature Geoscience</i> , 2022 , 15, 5-13	18.3	7
36	Management intensification maintains wood production over multiple harvests in tropical Eucalyptus plantations. <i>Ecological Applications</i> , 2019 , 29, e01879	4.9	6
35	WATER AND TREEDINDERSTORY INTERACTIONS: A NATURAL EXPERIMENT IN A SAVANNA WITH OAK WILT. <i>Ecology</i> , 2001 , 82, 33-49	4.6	6
34	Ungulates mediate trade-offs between carbon storage and wildfire hazard in Mediterranean oak woodlands. <i>Journal of Applied Ecology</i> , 2019 , 56, 699-710	5.8	6
33	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). <i>Geoscientific Model Development</i> , 2022 , 15, 1289-1316	6.3	6
32	Response to Comment on P otential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifers <i>Environmental Science & Environmental Science & Environ</i>	10.3	5
31	Plant physiological ecology: linking the organism to scales above and below. <i>New Phytologist</i> , 2001 , 149, 12-16	9.8	5
30	On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13011-13022	6.8	5
29	Peak grain forecasts for the US High Plains amid withering waters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 26145-26150	11.5	5
28	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. <i>Agricultural and Forest Meteorology</i> , 2021 , 308-309, 108528	5.8	5
27	Plant sizes and shapes above- and belowground and their interactions with climate <i>New Phytologist</i> , 2022 ,	9.8	4
26	Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993-2017 <i>National Science Review</i> , 2022 , 9, nwab200	10.8	4
25	THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION 2000 , 10, 423		4
24	Divergent controls of soil organic carbon between observations and process-based models. <i>Biogeochemistry</i> , 2021 , 156, 5-17	3.8	4

23	Orphaned oil and gas well stimulus Maximizing economic and environmental benefits. <i>Elementa</i> , 2021 , 9,	3.6	4
22	Land-use emissions embodied in international trade Science, 2022, 376, 597-603	33.3	4
21	Reply to: Practical constraints on atmospheric methane removal. <i>Nature Sustainability</i> , 2020 , 3, 358-359	22.1	3
20	Flowering in grassland predicted by CO and resource effects on species aboveground biomass. <i>Global Change Biology</i> , 2018 , 24, 1771-1781	11.4	3
19	A first record of bulk atmospheric deposition patterns of major ions in southern South America. <i>Biogeochemistry</i> , 2019 , 144, 261-271	3.8	3
18	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food,	14.4	3
17	Multiple constraints cause positive and negative feedbacks limiting grassland soil CO efflux under CO enrichment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
16	Response to Comment on "Impact to Underground Sources of Drinking Water and Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion, Wyoming Field". <i>Environmental Science & Environmental </i>	10.3	3
15	Ecosystem Collapse and Climate Change: An Introduction. <i>Ecological Studies</i> , 2021 , 1-9	1.1	3
14	Projected drought effects on the demography of Ashe juniper populations inferred from remote measurements of tree canopies. <i>Plant Ecology</i> , 2018 , 219, 1259-1267	1.7	3
13	FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands		3
12	Global fossil carbon emissions rebound near pre-COVID-19 levels. <i>Environmental Research Letters</i> , 2022 , 17, 031001	6.2	3
11	Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000\(\textstyle{0}\)016 period 2019 ,		2
10	Variability and quasi-decadal changes in the methane budget over the period 2000₫012 2017 ,		2
9	Comment on "A reservoir of nitrate beneath desert soils". <i>Science</i> , 2004 , 304, 51; author reply 51	33.3	2
8	Contrasting responses of woody and grassland ecosystems to increased CO as water supply varies <i>Nature Ecology and Evolution</i> , 2022 ,	12.3	2
7	Global temperature goals should determine the time horizons for greenhouse gas emission metrics. <i>Environmental Research Letters</i> , 2022 , 17, 024019	6.2	2
6	WATER IN A CHANGING WORLD 2001 , 11, 1027		2

LIST OF PUBLICATIONS

5	Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets 2020 ,		1	
4	Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottom-Up and Top-Down Approaches: Informing Future Research and National Inventories. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL095264	4.9	1	
3	MEETING ECOLOGICAL AND SOCIETAL NEEDS FOR FRESHWATER 2002 , 12, 1247		1	
2	COVID-19 and Emissions: An Opportunity for Sustainable Global Health. <i>European Heart Journal</i> , 2021 , 42, 3415-3417	9.5	O	
1	Reply to 'Greenhouse gas emissions from synthetic natural gas production'. <i>Nature Climate Change</i> , 2016 , 6, 221-222	21.4		