Melinda T Coughlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1843155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Stress as a Major Culprit in Kidney Disease in Diabetes. Diabetes, 2008, 57, 1446-1454.	0.3	999
2	RAGE-Induced Cytosolic ROS Promote Mitochondrial Superoxide Generation in Diabetes. Journal of the American Society of Nephrology: JASN, 2009, 20, 742-752.	3.0	391
3	Receptor for Advanced Glycation End Products (RAGE) Deficiency Attenuates the Development of Atherosclerosis in Diabetes. Diabetes, 2008, 57, 2461-2469.	0.3	376
4	Inhibition of NADPH Oxidase Prevents Advanced Glycation End Product–Mediated Damage in Diabetic Nephropathy Through a Protein Kinase C-α–Dependent Pathway. Diabetes, 2008, 57, 460-469.	0.3	317
5	miR-200a Prevents Renal Fibrogenesis Through Repression of TGF-β2 Expression. Diabetes, 2011, 60, 280-287.	0.3	311
6	Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. British Journal of Nutrition, 2014, 111, 1147-1161.	1.2	243
7	Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy?. British Journal of Pharmacology, 2014, 171, 1917-1942.	2.7	204
8	Altered Placental Oxidative Stress Status in Gestational Diabetes Mellitus. Placenta, 2004, 25, 78-84.	0.7	186
9	Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation, 2020, 141, 1393-1403.	1.6	176
10	Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology. Nutrients, 2019, 11, 215.	1.7	146
11	Dietary Advanced Glycation End Products and Risk Factors for Chronic Disease: A Systematic Review of Randomised Controlled Trials. Nutrients, 2016, 8, 125.	1.7	142
12	Advanced Glycation End Products Are Direct Modulators of β-Cell Function. Diabetes, 2011, 60, 2523-2532.	0.3	135
13	Interactions between Renin Angiotensin System and Advanced Glycation in the Kidney. Journal of the American Society of Nephrology: JASN, 2005, 16, 2976-2984.	3.0	134
14	Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia, 2007, 50, 1770-1779.	2.9	132
15	NADPH Oxidase Nox5 Accelerates Renal Injury in Diabetic Nephropathy. Diabetes, 2017, 66, 2691-2703.	0.3	119
16	Combination Therapy with the Advanced Glycation End Product Cross-Link Breaker, Alagebrium, and Angiotensin Converting Enzyme Inhibitors in Diabetes: Synergy or Redundancy?. Endocrinology, 2007, 148, 886-895.	1.4	118
17	Antiatherosclerotic and Renoprotective Effects of Ebselen in the Diabetic Apolipoprotein E/CPx1-Double Knockout Mouse. Diabetes, 2010, 59, 3198-3207.	0.3	114
18	Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clinical Science, 2016, 130, 711-720.	1.8	114

MELINDA T COUGHLAN

#	Article	IF	CITATIONS
19	Effect of diet-derived advanced glycation end products on inflammation. Nutrition Reviews, 2015, 73, 737-759.	2.6	113
20	Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radical Biology and Medicine, 2012, 52, 716-723.	1.3	112
21	Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E323-E330.	1.8	105
22	Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2010, 298, F763-F770.	1.3	105
23	Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus. Diabetic Medicine, 2001, 18, 921-927.	1.2	104
24	Targeted reduction of advanced glycation improves renal function in obesity. Kidney International, 2011, 80, 190-198.	2.6	102
25	Nox-4 deletion reduces oxidative stress and injury by PKC- <i>α</i> -associated mechanisms in diabetic nephropathy. Physiological Reports, 2014, 2, e12192.	0.7	88
26	Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidneyAdisease. Kidney International, 2016, 90, 272-279.	2.6	85
27	Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. Journal of Hypertension, 2010, 28, 780-788.	0.3	80
28	Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Review of Diabetic Studies, 2015, 12, 134-156.	0.5	80
29	Processed foods drive intestinal barrier permeability and microvascular diseases. Science Advances, 2021, 7, .	4.7	80
30	Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and inflammatory biomarkers in adults with pre-diabetes: a study protocol for a double-blind placebo-controlled randomised crossover clinical trial. BMC Endocrine Disorders, 2014, 14, 55.	0.9	70
31	Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney International, 2010, 78, 287-295.	2.6	69
32	Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor. Diabetologia, 2010, 53, 2442-2451.	2.9	68
33	Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101507.	2.2	63
34	Modulation of the Gut Microbiota by Resistant Starch as a Treatment of Chronic Kidney Diseases: Evidence of Efficacy and Mechanistic Insights. Advances in Nutrition, 2019, 10, 303-320.	2.9	56
35	Repression of Oxidant-Induced Nuclear Factor-κB Activity Mediates Placental Cytokine Responses in Gestational Diabetes. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3585-3594.	1.8	55
36	<i>Oxidative Stress and Advanced Glycation in Diabetic Nephropathy</i> . Annals of the New York Academy of Sciences, 2008, 1126, 190-193.	1.8	50

MELINDA T COUGHLAN

#	Article	IF	CITATIONS
37	Advanced glycation end products augment experimental hepatic fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 369-376.	1.4	50
38	Deficiency in Mitochondrial Complex I Activity Due to <i>Ndufs6</i> Gene Trap Insertion Induces Renal Disease. Antioxidants and Redox Signaling, 2013, 19, 331-343.	2.5	48
39	Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility. Diabetes, 2020, 69, 83-98.	0.3	48
40	Deficiency in Apoptosis-Inducing Factor Recapitulates Chronic Kidney Disease via Aberrant Mitochondrial Homeostasis. Diabetes, 2016, 65, 1085-1098.	0.3	47
41	High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. Nature Communications, 2021, 12, 7056.	5.8	45
42	Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia, 2011, 54, 1032-1042.	2.9	43
43	Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence. Human Reproduction, 2018, 33, 654-665.	0.4	40
44	Stirring the Pot: Can Dietary Modification Alleviate the Burden of CKD?. Nutrients, 2017, 9, 265.	1.7	39
45	Advanced Glycation Urinary Protein-Bound Biomarkers and Severity of Diabetic Nephropathy in Man. American Journal of Nephrology, 2011, 34, 347-355.	1.4	38
46	Use of Readily Accessible Inflammatory Markers to Predict Diabetic Kidney Disease. Frontiers in Endocrinology, 2018, 9, 225.	1.5	38
47	Renal Microvascular Injury in Diabetes: RAGE and Redox Signaling. Antioxidants and Redox Signaling, 2007, 9, 331-342.	2.5	32
48	Targeting the <scp>AGEâ€RAGE</scp> axis improves renal function in the context of a healthy diet low in advanced glycation endâ€product content. Nephrology, 2013, 18, 47-56.	0.7	30
49	Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy. Diabetology and Metabolic Syndrome, 2014, 6, 86.	1.2	29
50	Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects. Amino Acids, 2014, 46, 321-326.	1.2	28
51	Delineating a role for the mitochondrial permeability transition pore in diabetic kidney disease by targeting cyclophilin D. Clinical Science, 2020, 134, 239-259.	1.8	27
52	Association between habitual dietary and lifestyle behaviours and skin autofluorescence (SAF), a marker of tissue accumulation of advanced glycation endproducts (AGEs), in healthy adults. European Journal of Nutrition, 2018, 57, 2209-2216.	1.8	25
53	RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor-Î ² and Increasing Resistance to Apoptosis. Diabetes, 2018, 67, 960-973.	0.3	23
54	Perinatal exposure to high dietary advanced glycation end products in transgenic NOD8.3 mice leads to pancreatic beta cell dysfunction. Islets, 2018, 10, 10-24.	0.9	23

MELINDA T COUGHLAN

#	Article	IF	CITATIONS
55	Increased liver AGEs induce hepatic injury mediated through an OST48 pathway. Scientific Reports, 2017, 7, 12292.	1.6	22
56	Preservation of Kidney Function with Combined Inhibition of NADPH Oxidase and Angiotensin-Converting Enzyme in Diabetic Nephropathy. American Journal of Nephrology, 2010, 32, 73-82.	1.4	21
57	Glucose homeostasis can be differentially modulated by varying individual components of a western diet. Journal of Nutritional Biochemistry, 2013, 24, 1251-1257.	1.9	21
58	The Role of AGE-RAGE Signalling as a Modulator of Gut Permeability in Diabetes. International Journal of Molecular Sciences, 2022, 23, 1766.	1.8	20
59	Advanced Glycation End Products as Environmental Risk Factors for the Development of Type 1 Diabetes. Current Drug Targets, 2012, 13, 526-540.	1.0	18
60	Mutation of regulatory phosphorylation sites in PFKFB2 worsens renal fibrosis. Scientific Reports, 2020, 10, 14531.	1.6	16
61	The Mitochondria-Targeted Methylglyoxal Sequestering Compound, MitoGamide, Is Cardioprotective in the Diabetic Heart. Cardiovascular Drugs and Therapy, 2019, 33, 669-674.	1.3	15
62	Serum carboxymethyllysine concentrations are reduced in diabetic men with abdominal aortic aneurysms: Health In Men Study. Journal of Vascular Surgery, 2009, 50, 626-631.	0.6	14
63	SOD2 in skeletal muscle: New insights from an inducible deletion model. Redox Biology, 2021, 47, 102135.	3.9	14
64	Can Targeting the Incretin Pathway Dampen RAGE-Mediated Events in Diabetic Nephropathy?. Current Drug Targets, 2016, 17, 1252-1264.	1.0	14
65	Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating ROS-Sensitive Pathways. Diabetes, 2022, 71, 1282-1298.	0.3	14
66	Temporal Increases in Urinary Carboxymethyllysine Correlate with Albuminuria Development in Diabetes. American Journal of Nephrology, 2011, 34, 9-17.	1.4	13
67	The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxidants and Redox Signaling, 2022, 37, 781-801.	2.5	12
68	Intravascular Follistatin gene delivery improves glycemic control in a mouse model of type 2 diabetes. FASEB Journal, 2020, 34, 5697-5714.	0.2	10
69	Confirmation of the Cardioprotective Effect of MitoGamide in the Diabetic Heart. Cardiovascular Drugs and Therapy, 2020, 34, 823-834.	1.3	9
70	Renal ACE2 (Angiotensin-Converting Enzyme 2) Expression Is Modulated by Dietary Fiber Intake, Gut Microbiota, and Their Metabolites. Hypertension, 2021, 77, e53-e55.	1.3	9
71	Targeted deletion of nicotinamide adenine dinucleotide phosphate oxidase 4Âfrom proximal tubules is dispensable for diabetic kidney disease development. Nephrology Dialysis Transplantation, 2021, 36, 988-997.	0.4	9
72	Exploring the role of the metabolite-sensing receptor GPR109a in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2020, 318, F835-F842.	1.3	8

#	Article	IF	CITATIONS
73	Reduced Growth, Altered Gut Microbiome and Metabolite Profile, and Increased Chronic Kidney Disease Risk in Young Pigs Consuming a Diet Containing Highly Resistant Protein. Frontiers in Nutrition, 2022, 9, 816749.	1.6	7
74	Can Advanced Glycation End Product Inhibitors Modulate More than One Pathway to Enhance Renoprotection in Diabetes?. Annals of the New York Academy of Sciences, 2005, 1043, 750-758.	1.8	6
75	Globally elevating the AGE clearance receptor, OST48, does not protect against the development of diabetic kidney disease, despite improving insulin secretion. Scientific Reports, 2019, 9, 13664.	1.6	5
76	The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion (alters structural composition). Endocrinology, Diabetes and Metabolism, 2021, 4, e00278.	1.0	4
77	Targeting Methylglyoxal in Diabetic Kidney Disease Using the Mitochondria-Targeted Compound MitoGamide. Nutrients, 2021, 13, 1457.	1.7	3
78	Can you reduce your AGE?. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 85-92.	0.5	2
79	Methods in renal research: Measurement of autophagic flux in the renal cortex <i>ex vivo</i> . Nephrology, 2018, 23, 815-820.	0.7	1
80	The Devil's in the Detail: The Importance of Specific, Descriptive Language for Reproducibility in Nutrition Science. , 2020, 30, 274-275.		1
81	Microbial influencers: treating diabetes through the gut. Immunology and Cell Biology, 2022, 100, 390-393.	1.0	1