Weiru Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1842504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformation-locking antibodies for the discovery and characterization of KRAS inhibitors. Nature Biotechnology, 2022, 40, 769-778.	9.4	5
2	Discovery of Spiro-azaindoline Inhibitors of Hematopoietic Progenitor Kinase 1 (HPK1). ACS Medicinal Chemistry Letters, 2022, 13, 84-91.	1.3	17
3	A saturation mutagenesis screen uncovers resistant and sensitizing secondary <i>KRAS</i> mutations to clinical KRAS ^{G12C} inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120512119.	3.3	9
4	Targeting KRAS Mutant Cancers via Combination Treatment: Discovery of a 5-Fluoro-4-(3 <i>H</i>)-quinazolinone Aryl Urea pan-RAF Kinase Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 3940-3955.	2.9	17
5	An Approach to Bioactivity Assessment for Critical Quality Attribute Identification Based on Antibody-Antigen Complex Structure. Journal of Pharmaceutical Sciences, 2021, 110, 1652-1660.	1.6	1
6	Targeting KRAS Mutant Cancers via Combination Treatment: Discovery of a Pyridopyridazinone pan-RAF Kinase Inhibitor. ACS Medicinal Chemistry Letters, 2021, 12, 791-797.	1.3	3
7	Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1α. Nature Communications, 2021, 12, 7310.	5.8	24
8	Identification of BRaf-Sparing Amino-Thienopyrimidines with Potent IRE11± Inhibitory Activity. ACS Medicinal Chemistry Letters, 2020, 11, 2389-2396.	1.3	6
9	Activation of the IRE1 RNase through remodeling of the kinase front pocket by ATP-competitive ligands. Nature Communications, 2020, 11, 6387.	5.8	24
10	Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2. Proceedings of the United States of America, 2019, 116, 15463-15468.	3.3	28
11	Disruption of IRE1α through its kinase domain attenuates multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16420-16429.	3.3	78
12	Single cell-produced and <i>in vitro</i> -assembled anti-FcRH5/CD3 T-cell dependent bispecific antibodies have similar <i>in vitro</i> and <i>in vivo</i> properties. MAbs, 2019, 11, 422-433.	2.6	14
13	Development, Optimization, and Structural Characterization of an Efficient Peptide-Based Photoaffinity Cross-Linking Reaction for Generation of Homogeneous Conjugates from Wild-Type Antibodies. Bioconjugate Chemistry, 2019, 30, 148-160.	1.8	17
14	Hematopoietic Progenitor Kinase-1 Structure in a Domain-Swapped Dimer. Structure, 2019, 27, 125-133.e4.	1.6	26
15	A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nature Chemical Biology, 2018, 14, 582-590.	3.9	50
16	ERK Mutations and Amplification Confer Resistance to ERK-Inhibitor Therapy. Clinical Cancer Research, 2018, 24, 4044-4055.	3.2	36
17	Next-Generation Sequencing Reveals Novel Mutations in X-linked Intellectual Disability. OMICS A Journal of Integrative Biology, 2017, 21, 295-303.	1.0	34
18	Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4147-4152.	3.3	95

#	Article	IF	CITATIONS
19	Structure of Crenezumab Complex with AÎ ² Shows Loss of Î ² -Hairpin. Scientific Reports, 2016, 6, 39374.	1.6	84
20	Discovery of (<i>S</i>)-1-(1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1 <i>H</i> -pyrazol-5-yl)amino)pyrimid (GDC-0994), an Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Inhibitor in Early Clinical Development. Journal of Medicinal Chemistry, 2016, 59, 5650-5660.	in-4-yl)pyric	lin-2(1 <i>H123</i>
21	Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window. Journal of Medicinal Chemistry, 2016, 59, 5520-5541.	2.9	57
22	Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 8345-8368.	2.9	24
23	Synthesis and evaluation of a series of 4-azaindole-containing p21-activated kinase-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3518-3524.	1.0	10
24	Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 5121-5136.	2.9	33
25	Leveraging the Pre-DFG Residue Thr-406 To Obtain High Kinase Selectivity in an Aminopyrazole-Type PAK1 Inhibitor Series. ACS Medicinal Chemistry Letters, 2015, 6, 711-715.	1.3	11
26	Discovery of Highly Potent, Selective, and Efficacious Small Molecule Inhibitors of ERK1/2. Journal of Medicinal Chemistry, 2015, 58, 1976-1991.	2.9	31
27	Identification of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with no evidence of CYP3A4 time-dependent inhibition and improved aqueous solubility. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 529-541.	1.0	22
28	Regulation of the oncoprotein Smoothened by small molecules. Nature Chemical Biology, 2015, 11, 246-255.	3.9	107
29	Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-p <i>K</i> _a Polar Moiety. ACS Medicinal Chemistry Letters, 2015, 6, 1241-1246.	1.3	68
30	RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 2015, 526, 583-586.	13.7	322
31	Fragment-based discovery of potent ERK2 pyrrolopyrazine inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4728-4732.	1.0	13
32	Inhibitors of p21-Activated Kinases (PAKs). Journal of Medicinal Chemistry, 2015, 58, 111-129.	2.9	98
33	Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes. Nature Genetics, 2015, 47, 13-21.	9.4	310
34	Structural and Biochemical Analyses of the Catalysis and Potency Impact of Inhibitor Phosphoribosylation by Human Nicotinamide Phosphoribosyltransferase. ChemBioChem, 2014, 15, 1121-1130.	1.3	42
35	Dimerization of the kinase ARAF promotes MAPK pathway activation and cell migration. Science Signaling, 2014, 7, ra73.	1.6	52

³⁶ Fragment-based design of 3-aminopyridine-derived amides as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 2014, 24, 954-962. 1.0 19

#	Article	IF	CITATIONS
37	Discovery of 5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine inhibitors of Erk2. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2635-2639.	1.0	29
38	Fragment-Based Identification of Amides Derived from <i>trans</i> -2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT). Journal of Medicinal Chemistry, 2014, 57, 770-792.	2.9	34
39	Targeting Protein-Protein Interaction by Small Molecules. Annual Review of Pharmacology and Toxicology, 2014, 54, 435-456.	4.2	170
40	High-Throughput Detection of Clinically Relevant Mutations in Archived Tumor Samples by Multiplexed PCR and Next-Generation Sequencing. Clinical Cancer Research, 2014, 20, 2080-2091.	3.2	57
41	Back Pocket Flexibility Provides Group II p21-Activated Kinase (PAK) Selectivity for Type I 1/2 Kinase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1033-1045.	2.9	50
42	Characterization of Oxidative Carbonylation on Recombinant Monoclonal Antibodies. Analytical Chemistry, 2014, 86, 4799-4806.	3.2	26
43	Reduction in lipophilicity improved the solubility, plasma–protein binding, and permeability of tertiary sulfonamide RORc inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3891-3897.	1.0	45
44	Discovery of potent and efficacious cyanoguanidine-containing nicotinamide phosphoribosyltransferase (Nampt) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 337-343.	1.0	15
45	Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors. PLoS ONE, 2014, 9, e109366.	1.1	25
46	Identification of amides derived from 1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5488-5497.	1.0	37
47	Structure-Based Discovery of Novel Amide-Containing Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6413-6433.	2.9	61
48	ldentification of 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived ureas as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4875-4885.	1.0	31
49	NMR Study to Identify a Ligand-Binding Pocket in Ras. The Enzymes, 2013, 33 Pt A, 15-39.	0.7	7
50	Diethylaminosulfur trifluoride-mediated intramolecular cyclization of 2-hydroxycycloalkylureas to fused bicyclic aminooxazoline compounds and evaluation of their biochemical activity against β-secretase-1 (BACE-1). Tetrahedron Letters, 2013, 54, 5802-5807.	0.7	5
51	Allosteric inhibition of BACE1 by an exosite-binding antibody. Current Opinion in Structural Biology, 2013, 23, 797-805.	2.6	30
52	Discovery of potent and efficacious urea-containing nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with reduced CYP2C9 inhibition properties. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3531-3538.	1.0	38
53	Structure-Based Identification of Ureas as Novel Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 4921-4937.	2.9	55
54	Development and Preclinical Characterization of a Humanized Antibody Targeting CXCL12. Clinical Cancer Research, 2013, 19, 4433-4445.	3.2	33

#	Article	IF	CITATIONS
55	Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5299-5304.	3.3	526
56	Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488, 660-664.	13.7	862
57	Ras inhibition via direct Ras binding—is there a path forward?. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5766-5776.	1.0	87
58	A Therapeutic Antibody Targeting BACE1 Inhibits Amyloid-β Production in Vivo. Science Translational Medicine, 2011, 3, 84ra43.	5.8	246
59	Wnt Antagonists Bind through a Short Peptide to the First β-Propeller Domain of LRP5/6. Structure, 2011, 19, 1433-1442.	1.6	143
60	An ARL3–UNC119–RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes and Development, 2011, 25, 2347-2360.	2.7	202
61	Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 2010, 466, 869-873.	13.7	1,189
62	Chemotaxis Receptor in Bacteria. , 2010, , 195-200.		1
63	Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 262-267.	3.3	134
64	Somatic Mutations in p85α Promote Tumorigenesis through Class IA PI3K Activation. Cancer Cell, 2009, 16, 463-474.	7.7	291
65	Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3041-3046.	3.3	1,206
66	Synthesis and Evaluation of Multisubstrate Bicyclic Pyrimidine Nucleoside Inhibitors of Human Thymidine Phosphorylase. Journal of Medicinal Chemistry, 2006, 49, 7807-7815.	2.9	23
67	Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3563-3568.	3.3	76
68	Novel multisubstrate inhibitors of mammalian purine nucleoside phosphorylase. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1449-1458.	2.5	7
69	The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7505-7510.	3.3	129
70	Crystal structure of flavin binding to FAD synthetase of Thermotoga maritima. Proteins: Structure, Function and Bioinformatics, 2004, 58, 246-248.	1.5	32
71	Crystal structure of a flavin-binding protein from Thermotoga maritima. Proteins: Structure, Function and Bioinformatics, 2003, 52, 633-635.	1.5	22
72	Crystal structure of tRNA (m1G37) methyltransferase fromAquifex aeolicusat 2.6 Ã resolution: A novel methyltransferase fold. Proteins: Structure, Function and Bioinformatics, 2003, 53, 326-328.	1.5	33

#	Article	IF	CITATIONS
73	Chemotaxis Receptor in Bacteria: Transmembrane Signaling, Sensitivity, Adaptation, and Receptor Clustering. , 2003, , 197-202.		0
74	Dynamic and clustering model of bacterial chemotaxis receptors: Structural basis for signaling and high sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11611-11615.	3.3	141
75	Structural Characterization of the Reaction Pathway in Phosphoserine Phosphatase: Crystallographic "snapshots―of Intermediate States. Journal of Molecular Biology, 2002, 319, 421-431.	2.0	170
76	In Vitro Protein Production for Structure Determination with the RTS System. , 2002, , 227-233.		0
77	Crystal Structure and Mechanism of Catalysis of a Pyrazinamidase from Pyrococcus horikoshii. Biochemistry, 2001, 40, 14166-14172.	1.2	96
78	Crystal Structure of Phosphoserine Phosphatase from Methanococcus jannaschii, a Hyperthermophile, at 1.8 A Resolution. Structure, 2001, 9, 65-71.	1.6	130
79	Purification, crystallization and preliminary X-ray diffraction data from selenomethionine glycinamide ribonucleotide synthetase. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 518-521.	2.5	1
80	X-ray Crystal Structure of Glycinamide Ribonucleotide Synthetase fromEscherichia coliâ€,‡. Biochemistry, 1998, 37, 15647-15662.	1.2	57