
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/184248/publications.pdf Version: 2024-02-01

INEZ RATISTA

#	Article	IF	CITATIONS
1	Magnetic declination control of the equatorial F region dynamo electric field development and spread F. Journal of Geophysical Research, 1981, 86, 11443-11446.	3.3	250
2	Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Annales Geophysicae, 2009, 27, 2607-2622.	1.6	183
3	Equatorial F region vertical plasma drifts: Seasonal and longitudinal asymmetries in the American sector. Journal of Geophysical Research, 1986, 91, 12055-12064.	3.3	181
4	Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 2003, 108, .	3.3	152
5	Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, theF3layer. Journal of Geophysical Research, 1997, 102, 2047-2056.	3.3	149
6	Some characteristics of spread F at the magnetic equatorial station Fortaleza. Journal of Geophysical Research, 1981, 86, 6836-6842.	3.3	134
7	lonospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes. Journal of Geophysical Research, 1991, 96, 13943-13952.	3.3	120
8	Equatorial ionospheric electric fields during magnetospheric disturbances: local time/longitude dependences from recent EITS campaigns. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 1065-1083.	0.9	119
9	Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign. Annales Geophysicae, 2009, 27, 1477-1487.	1.6	115
10	A new aspect of magnetic declination control of equatorial spread F and F region dynamo. Journal of Geophysical Research, 1992, 97, 14897-14904.	3.3	112
11	Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere. Journal of Geophysical Research, 1998, 103, 29169-29181.	3.3	111
12	South Atlantic magnetic anomaly ionization: A review and a new focus on electrodynamic effects in the equatorial ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1643-1657.	1.6	108
13	Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere. Journal of Geophysical Research, 1983, 88, 399-402.	3.3	99
14	Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx). Annales Geophysicae, 2008, 26, 3235-3252.	1.6	96
15	Conjugate Point Equatorial Experiment (COPEX) campaign in Brazil: Electrodynamics highlights on spread <i>F</i> development conditions and dayâ€toâ€day variability. Journal of Geophysical Research, 2009, 114, .	3.3	90
16	Fast and ultrafast Kelvin wave modulations of the equatorial evening F region vertical drift and spread F development. Earth, Planets and Space, 2015, 67, .	2.5	90
17	Equatorial evening prereversal electric field enhancement and sporadicElayer disruption: A manifestation ofEandFregion coupling. Journal of Geophysical Research, 2003, 108, .	3.3	87
18	Effects of intense storms and substorms on the equatorial ionosphere/thermosphere system in the American sector from groundâ€based and satellite data. Journal of Geophysical Research, 1997, 102, 14305-14313.	3.3	86

#	Article	IF	CITATIONS
19	Two-day wave coupling of the low-latitude atmosphere-ionosphere system. Journal of Geophysical Research, 2006, 111, .	3.3	84
20	Equatorial F region vertical plasma drifts during solar maxima. Journal of Geophysical Research, 1989, 94, 12049-12054.	3.3	82
21	Characteristics of the sporadic sodium layers observed at 23°S. Journal of Geophysical Research, 1989, 94, 15349-15358.	3.3	82
22	Responses of the low-latitude ionosphere to very intense geomagnetic storms. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 965-974.	1.6	80
23	Magnetospheric disturbance effects on the Equatorial Ionization Anomaly (EIA) : an overview. Journal of Atmospheric and Solar-Terrestrial Physics, 1991, 53, 757-771.	0.9	77
24	Ionospheric variability at Brazilian low and equatorial latitudes: comparison between observations and IRI model. Advances in Space Research, 2004, 34, 1894-1900.	2.6	76
25	Planetary wave signatures in the equatorial atmosphere–ionosphere system, and mesosphere- E- and F-region coupling. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 509-522.	1.6	74
26	Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophysical Research Letters, 2009, 36, .	4.0	74
27	lonospheric responses to the October 2003 superstorm: Longitude/local time effects over equatorial low and middle latitudes. Journal of Geophysical Research, 2007, 112, .	3.3	73
28	Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazilâ€ 5 outh Atlantic sector during the 30 October 2003 superstorm. Journal of Geophysical Research, 2008, 113, .	3.3	72
29	Signatures of ultra fast Kelvin waves in the equatorial middle atmosphere and ionosphere. Geophysical Research Letters, 2007, 34, .	4.0	71
30	Equatorial ionospheric vertical plasma drift model over the Brazilian region. Journal of Geophysical Research, 1996, 101, 10887-10892.	3.3	65
31	Association between plasma bubble irregularities and airglow disturbances over Brazilian low latitudes. Geophysical Research Letters, 1980, 7, 980-982.	4.0	64
32	GPS L-band scintillations and ionospheric irregularity zonal drifts inferred at equatorial and low-latitude regions. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 1261-1272.	1.6	64
33	Equatorial spread-F occurrence statistics in the American longitudes: Diurnal, seasonal and solar cycle variations. Advances in Space Research, 1998, 22, 851-854.	2.6	62
34	Signatures of 3–6 day planetary waves in the equatorial mesosphere and ionosphere. Annales Geophysicae, 2006, 24, 3343-3350.	1.6	61
35	lonospheric zonal velocities at conjugate points over Brazil during the COPEX campaign: Experimental observations and theoretical validations. Journal of Geophysical Research, 2009, 114, .	3.3	59
36	Observations and model calculations of an additional layer in the topside ionosphere above Fortaleza, Brazil. Annales Geophysicae, 1997, 15, 753-759.	1.6	58

#	Article	IF	CITATIONS
37	Electrodynamic disturbances in the Brazilian equatorial and lowâ€latitude ionosphere on St. Patrick's Day storm of 17 March 2015. Journal of Geophysical Research: Space Physics, 2017, 122, 4553-4570.	2.4	57
38	Long term trends in the frequency of occurrence of the F3 layer over Fortaleza, Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 1409-1412.	1.6	55
39	Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	55
40	Equatorial disturbance dynamo electric field longitudinal structure and spreadF: A case study from GUAR/EITS Campaigns. Geophysical Research Letters, 1997, 24, 1707-1710.	4.0	54
41	Equatorial F-layer heights, evening prereversal electric field, and night E-layer density in the American sector: IRI validation with observations. Advances in Space Research, 2004, 34, 1953-1965.	2.6	54
42	Onset conditions of equatorial (range) spreadFat Fortaleza, Brazil, during the June solstice. Journal of Geophysical Research, 1997, 102, 24013-24021.	3.3	53
43	Solar cycle related range type spread-F occurrence characteristics over equatorial and low latitude stations in Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 1985, 47, 901-905.	0.9	51
44	Multistation digisonde observations of equatorial spread F in South America. Annales Geophysicae, 2004, 22, 3145-3153.	1.6	51
45	Magnetic storm associated delayed sporadic E enhancements in the Brazilian Geomagnetic Anomaly. Journal of Geophysical Research, 1977, 82, 4777-4783.	3.3	50
46	Equatorial spread F statistics and empirical representation for IRI: A regional model for the Brazilian longitude sector. Advances in Space Research, 2003, 31, 703-716.	2.6	50
47	Unusual early morning development of the equatorial anomaly in the Brazilian sector during the Halloween magnetic storm. Journal of Geophysical Research, 2006, 111, .	3.3	50
48	Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F. Geophysical Research Letters, 2006, 33, .	4.0	49
49	An overview of IRI-observational data comparison in American (Brazilian) sector low latitude ionosphere. Advances in Space Research, 1996, 18, 13-22.	2.6	48
50	Overview and summary of the Spread F Experiment (SpreadFEx). Annales Geophysicae, 2009, 27, 2141-2155.	1.6	48
51	Scintillationâ€producing Fresnelâ€scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly. Journal of Geophysical Research, 2010, 115, .	3.3	47
52	Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophysical Research Letters, 2006, 33, .	4.0	46
53	Sporadic E-layer phenomena in the Brazilian geomagnetic anomaly: evidence for a regular particle ionization source. Journal of Atmospheric and Solar-Terrestrial Physics, 1977, 39, 723-731.	0.9	45
54	Observations of day-to-day variability in precursor signatures to equatorial F-region plasma depletions. Annales Geophysicae, 1999, 17, 1053-1063.	1.6	44

#	Article	IF	CITATIONS
55	Variability of an additional layer in the equatorial ionosphere over Fortaleza. Journal of Geophysical Research, 2000, 105, 10603-10613.	3.3	44
56	<i>D</i> , <i>E</i> , and <i>F</i> layers in the daytime at highâ€latitude terminator ionosphere of Mars: Comparison with Earth's ionosphere using COSMIC data. Journal of Geophysical Research, 2009, 114, .	3.3	42
57	Wave structure and polarization electric field development in the bottomside <i>F</i> layer leading to postsunset equatorial spread <i>F</i> . Journal of Geophysical Research: Space Physics, 2015, 120, 6930-6940.	2.4	42
58	Equatorial spread F statistics in the American longitudes: Some problems relevant to ESF description in the IRI scheme. Advances in Space Research, 2000, 25, 113-124.	2.6	41
59	A comparison of ionospheric vertical drift velocities measured by Digisonde and Incoherent Scatter Radar at the magnetic equator. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 669-678.	1.6	41
60	On the responses to solar Xâ€ray flare and coronal mass ejection in the ionospheres of Mars and Earth. Geophysical Research Letters, 2009, 36, .	4.0	39
61	Equatorial ionospheric plasma bubble irregularity occurrence and zonal velocities under quiet and disturbed conditions, from Polarimeter observations. Journal of Geophysical Research, 1985, 90, 9921-9928.	3.3	38
62	Evidence on 2-4 day oscillations of the equatorial ionosphere h′F and mesospheric airglow emissions. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	38
63	Magnetic storm associated enhanced particle precipitation in the South Atlantic Anomaly: Evidence from VLF phase measurements. Journal of Geophysical Research, 1981, 86, 7533-7542.	3.3	37
64	Rocket observation of equatorial plasma bubbles over Natal, Brazil, using a highâ€frequency capacitance probe. Journal of Geophysical Research, 1991, 96, 7689-7695.	3.3	36
65	Magnetic storm associated disturbance dynamo effects in the low and equatorial latitude ionosphere. Geophysical Monograph Series, 2006, , 283-304.	0.1	36
66	CME front and severe space weather. Journal of Geophysical Research: Space Physics, 2014, 119, 10,041.	2.4	35
67	Long term trends in sporadic E layers and electric fields over Fortaleza, Brazil. Geophysical Research Letters, 1996, 23, 757-760.	4.0	34
68	Presunrise spread F at Fortaleza. Journal of Geophysical Research, 1998, 103, 23415-23425.	3.3	34
69	Equatorial spread F and sporadic E-layer connections during the Brazilian Conjugate Point Equatorial Experiment (COPEX). Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 1133-1143.	1.6	34
70	lonospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth, Planets and Space, 2019, 71, .	2.5	34
71	Simulation of the sporadicElayer response to prereversal associated evening vertical electric field enhancement near dip equator. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	33
72	Lowâ€latitude scintillation weakening during sudden stratospheric warming events. Journal of Geophysical Research: Space Physics, 2015, 120, 2212-2221.	2.4	33

#	Article	IF	CITATIONS
73	Equatorial F region evening vertical drift, and peak height, during southern winter months: A comparison of observational data with the IRI descriptions. Advances in Space Research, 2006, 37, 1007-1017.	2.6	32
74	Total electron content at low latitudes and its comparison with the IRI90. Advances in Space Research, 1994, 14, 87-90.	2.6	31
75	Incoherent scatter radar, ionosonde, and satellite measurements of equatorialFregion vertical plasma drifts in the evening sector. Geophysical Research Letters, 1996, 23, 1733-1736.	4.0	31
76	High electron temperature associated with the prereversal enhancement in the equatorial ionosphere. Journal of Geophysical Research, 1997, 102, 417-424.	3.3	31
77	Eastâ€west plasma bubble irregularity motion determined from spaced VHF polarimeters: Implications on velocity shear in the zonal F region bulk plasma motion. Radio Science, 1985, 20, 111-122.	1.6	30
78	Modeling the equatorial and lowâ€latitude ionospheric response to an intense Xâ€class solar flare. Journal of Geophysical Research: Space Physics, 2015, 120, 3021-3032.	2.4	30
79	Wave disturbances in the low latitude ionosphere and equatorial ionospheric plasma depletions. Journal of Geophysical Research, 1981, 86, 1374-1378.	3.3	29
80	Vertical and zonal equatorial F-region plasma bubble velocities determined from OI 630 nm nightglow imaging. Advances in Space Research, 1997, 20, 1297-1300.	2.6	29
81	Gravity wave induced ionization layers in the night F-region over Cachoeira Paulista (22°S, 45°W). Journal of Atmospheric and Solar-Terrestrial Physics, 1982, 44, 759-767.	0.9	28
82	Equatorial electrojet irregularities investigations using a back-scatter radar and a digisonde at São LuıÌs: some initial results. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 1425-1434.	1.6	28
83	The role of electric fields in sporadic E layer formation over low latitudes under quiet and magnetic storm conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 115-116, 95-105.	1.6	28
84	A scheme for forecasting severe space weather. Journal of Geophysical Research: Space Physics, 2017, 122, 2824-2835.	2.4	28
85	Study of sporadic EÂlayers based on GPS radio occultation measurements and digisonde data over the Brazilian region. Annales Geophysicae, 2018, 36, 587-593.	1.6	28
86	Observation of Postsunset OI 135.6Ânm Radiance Enhancement Over South America by the GOLD Mission. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028108.	2.4	28
87	Determination of vertical plasma drift and meridional wind using the Sheffield University Plasmasphere Ionosphere Model and ionospheric data at equatorial and low latitudes in Brazil: Summer solar minimum and maximum conditions. Journal of Geophysical Research, 2000, 105, 12813-12821.	3.3	27
88	An investigation of ionospheric responses, and disturbance thermospheric winds, during magnetic storms over South American sector. Journal of Geophysical Research, 2002, 107, SIA 12-1.	3.3	27
89	Equatorial ionosphere bottomâ€ŧype spread F observed by OI 630.0 nm airglow imaging. Geophysical Research Letters, 2010, 37, .	4.0	27
90	A global view of the atmospheric lunar semidiurnal tide. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,128.	3.3	27

#	Article	IF	CITATIONS
91	Equatorial electrojet 3-M irregularity dynamics during magnetic disturbances over Brazil: results from the new VHF radar at SA£o Luıls. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 1293-1308.	1.6	26
92	Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil. Journal of Geophysical Research, 2012, 117, .	3.3	26
93	Abnormal fb Es enhancements in equatorial Es layers during magnetic storms of solar cycle 23. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 102, 228-234.	1.6	26
94	Prediction of the level of ionospheric scintillation at equatorial latitudes in Brazil using a neural network. Space Weather, 2015, 13, 446-457.	3.7	26
95	The influence of tidal winds in the formation of blanketing sporadic e-layer over equatorial Brazilian region. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 171, 64-71.	1.6	26
96	Thermospheric meridional wind at low latitude from measurements of F layer peak height. Journal of Geophysical Research, 1997, 102, 14531-14540.	3.3	25
97	Longitudinal differences in the equatorial spread F characteristics between Vietnam and Brazil. Advances in Space Research, 2010, 45, 351-360.	2.6	25
98	Solar flux effects on the equatorial evening vertical drift and meridional winds over Brazil: A comparison between observational data and the IRI model and the HWM representations. Advances in Space Research, 2010, 46, 1078-1085.	2.6	25
99	Magnetic conjugate point observations of kilometer and hundredâ€meter scale irregularities and zonal drifts. Journal of Geophysical Research, 2010, 115, .	3.3	25
100	Equatorial range spread F echoes from coherent backscatter, and irregularity growth processes, from conjugate point digital ionograms. Radio Science, 2012, 47, .	1.6	25
101	Storm time equatorial plasma bubble zonal drift reversal due to disturbance Hall electric field over the Brazilian region. Journal of Geophysical Research: Space Physics, 2016, 121, 5594-5612.	2.4	25
102	Simultaneous lidar observation of a sporadic sodium layer, a "wall―event in the OH and OI5577 airglow images and the meteor winds. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 1327-1335.	1.6	24
103	A statistical study of the response of the dayside equatorialF2layer to the main phase of intense geomagnetic storms as an indicator of penetration electric field. Journal of Geophysical Research, 2011, 116, .	3.3	24
104	Sporadic <i>E</i> layer development and disruption at low latitudes by prompt penetration electric fields during magnetic storms. Journal of Geophysical Research: Space Physics, 2013, 118, 2639-2647.	2.4	24
105	Equatorial ionization anomaly variability over the Brazilian region during boreal sudden stratospheric warming events. Journal of Geophysical Research: Space Physics, 2014, 119, 7649-7664.	2.4	24
106	Sporadic structures in the atmospheric sodium layer. Journal of Geophysical Research, 2004, 109, .	3.3	23
107	Radio occultation electron density profiles from the FORMOSAT-3/COSMIC satellites over the Brazilian region: A comparison with Digisonde data. Advances in Space Research, 2012, 49, 1553-1562.	2.6	23
108	Nighttime thermospheric meridional winds at Cachoeira Paulista (23°S, 45°W): Evidence for effects of the equatorial midnight pressure bulge. Journal of Geophysical Research, 1997, 102, 20059-20062.	3.3	22

#	Article	IF	CITATIONS
109	Equatorial ionization anomaly and thermospheric meridional winds during two major storms over Brazilian low latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1535-1543.	1.6	22
110	Effects of the intense geomagnetic storm of September–October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 138-139, 93-105.	1.6	22
111	Comparison between IRI predictions and digisonde measurements at low latitude station. Advances in Space Research, 1996, 18, 49-52.	2.6	21
112	Spread-F at anomaly crest regions in the Indian and American longitudes. Advances in Space Research, 2003, 31, 717-727.	2.6	21
113	Study of the March 31, 2001 magnetic storm effects on the ionosphere using GPS data. Advances in Space Research, 2005, 36, 534-545.	2.6	21
114	Solar flux effects on equatorial ionization anomaly and total electron content over Brazil: Observational results versus IRI representations. Advances in Space Research, 2008, 42, 617-625.	2.6	21
115	Possible influence of ultra-fast Kelvin wave on the equatorial ionosphere evening uplifting. Earth, Planets and Space, 2009, 61, 455-462.	2.5	21
116	Spaced transmitter measurements of medium scale traveling ionospheric disturbances near the equator. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	21
117	Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases. Journal of Geophysical Research: Space Physics, 2016, 121, 2503-2521.	2.4	21
118	lonospheric F-region observations over American sector during an intense space weather event using multi-instruments. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 156, 1-14.	1.6	21
119	Parameterized Regional Ionospheric Model and a comparison of its results with experimental data and IRI representations. Advances in Space Research, 2010, 46, 1032-1038.	2.6	20
120	Contrasting behavior of the F 2 peak and the topside ionosphere in response to the 2 October 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2016, 121, 10,549-10,563.	2.4	20
121	<i>F</i> ₃ layer development during quiet and disturbed periods as observed at conjugate locations in Brazil: The role of the meridional wind. Journal of Geophysical Research: Space Physics, 2017, 122, 2361-2373.	2.4	20
122	Study of ionospheric irregularities during intense magnetic storms. Revista Brasileira De Geofisica, 0, 25, 151-158.	0.2	19
123	F2 Peak parameters, drifts and spread F derived from digisonde ionograms for the COPEX campaign in Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 1144-1158.	1.6	19
124	The ultra-fast Kelvin waves in the equatorial ionosphere: observations and modeling. Annales Geophysicae, 2013, 31, 209-215.	1.6	19
125	The Influence of Disturbance Dynamo Electric Field in the Formation of Strong Sporadic <i>E</i> Layers Over Boa Vista, a Lowâ€Latitude Station in the American Sector. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027519.	2.4	19
126	Equatorial electrojet responses to intense solar flares under geomagnetic disturbance time electric fields. Journal of Geophysical Research: Space Physics, 2017, 122, 3570-3585.	2.4	18

#	Article	IF	CITATIONS
127	Equatorial <i>E</i> Region Electric Fields and Sporadic <i>E</i> Layer Responses to the Recovery Phase of the November 2004 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2017, 122, 12,517.	2.4	17
128	Ionospheric F3 layer: Implications for the IRI model. Advances in Space Research, 2003, 31, 607-611.	2.6	16
129	Equatorial Ionization Anomaly: The Role of Thermospheric Winds and the Effects of the Geomagnetic Field Secular Variation. , 2011, , 317-328.		16
130	Tomographic imaging of the equatorial and low-latitude ionosphere over central-eastern Brazil. Earth, Planets and Space, 2011, 63, 129-138.	2.5	16
131	Longitudinal variation in Global Navigation Satellite Systems TEC and topside ion density over South American sector associated with the fourâ€peaked wave structures. Journal of Geophysical Research: Space Physics, 2013, 118, 7940-7953.	2.4	16
132	A new parameter of geomagnetic storms for the severity of space weather. Geoscience Letters, 2016, 3,	3.3	16
133	Post-sunset wintertime 630.0 nm airglow perturbations associated with gravity waves at low latitudes in the South American sector. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 1611-1623.	1.6	15
134	Equatorial spread <i>F</i> initiation and growth from satellite traces as revealed from conjugate point observations in Brazil. Journal of Geophysical Research: Space Physics, 2014, 119, 375-383.	2.4	15
135	Correlation analysis between the occurrence of ionospheric scintillation at the magnetic equator and at the southern peak of the Equatorial Ionization Anomaly. Space Weather, 2014, 12, 406-416.	3.7	15
136	An Investigation of the Ionospheric Disturbances Due to the 2014 Sudden Stratospheric Warming Events Over Brazilian Sector. Journal of Geophysical Research: Space Physics, 2017, 122, 11,698.	2.4	15
137	Impact of disturbance electric fields in the evening on prereversal vertical drift and spread F developments in the equatorial ionosphere. Annales Geophysicae, 2018, 36, 609-620.	1.6	15
138	Longitudinal variation of the equatorial ionosphere: Modeling and experimental results. Advances in Space Research, 2013, 51, 654-660.	2.6	14
139	Zonal/meridional wind and disturbance dynamo electric field control of the low-latitude ionosphere based on the SUNDIAL/ATLAS 1 Campaign. Journal of Geophysical Research, 1996, 101, 26729-26740.	3.3	13
140	Lidar observations of atmospheric sodium at an equatorial location. Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60, 1773-1778.	1.6	13
141	The Impact of the Disturbed Electric Field in the Sporadic E (Es) Layer Development Over Brazilian Region. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028598.	2.4	13
142	Comparison of low latitude F region peak densities, heights and equatorial E×B drift from IRI with observational data and the Sheffield University plasmasphere ionosphere model. Advances in Space Research, 2003, 31, 501-505.	2.6	12
143	The prereversal enhancement in the vertical drift for Fortaleza and the sporadic E layer. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1610-1617.	1.6	12
144	Day-time F region echoes observed by the São LuÃs radar. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 103, 48-55.	1.6	12

#	Article	IF	CITATIONS
145	Climatology of intermediate descending layers (or 150 km echoes) over the equatorial and low-latitude regions of Brazil during the deep solar minimum of 2009. Annales Geophysicae, 2019, 37, 1005-1024.	1.6	12
146	The spread F Experiment (SpreadFEx): Program overview and first results. Earth, Planets and Space, 2009, 61, 411-430.	2.5	11
147	Flare Xâ€ray photochemistry of the <i>E</i> region ionosphere of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 6870-6888.	2.4	11
148	Automatic selection of Dst storms and their seasonal variations in two versions of Dst in 50Âyears. Earth, Planets and Space, 2017, 69, .	2.5	11
149	Wavenumber-4 structures observed in the low-latitude ionosphere during low and high solar activity periods using FORMOSAT/COSMIC observations. Annales Geophysicae, 2018, 36, 459-471.	1.6	11
150	On the rocketâ€induced wave disturbances in the daytime equatorial ionosphere. Journal of Geophysical Research, 1988, 93, 2758-2760.	3.3	10
151	Dust storm and electron density in the equatorial <i>D</i> region ionosphere of Mars: Comparison with Earth's ionosphere from rocket measurements in Brazil. Journal of Geophysical Research: Space Physics, 2015, 120, 8968-8977.	2.4	10
152	Observed effects in the equatorial and low-latitude ionosphere in the South American and African sectors during the 2012 minor sudden stratospheric warming. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 157-158, 78-89.	1.6	10
153	Ionospheric response to the 2006 sudden stratospheric warming event over the equatorial and low latitudes in the Brazilian sector using GPS observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 154, 92-103.	1.6	10
154	Response of the total electron content at Brazilian low latitudes to corotating interaction region and high-speed streams during solar minimum 2008. Earth, Planets and Space, 2018, 70, .	2.5	10
155	Superfountain Effect Linked With 17 March 2015 Geomagnetic Storm Manifesting Distinct F 3 Layer. Journal of Geophysical Research: Space Physics, 2019, 124, 6127-6137.	2.4	10
156	Some Differences in the Dynamics of the Intermediate Descending Layers Observed During Periods of Maximum and Minimum Solar Flux. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027682.	2.4	10
157	Early morning enhancement in ionospheric electron density during intense magnetic storms. Advances in Space Research, 2012, 49, 1544-1552.	2.6	9
158	Equatorial ionization anomaly development as studied by GPS TEC and foF2 over Brazil: A comparison of observations with model results from SUPIM and IRI-2012. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 104, 45-54.	1.6	9
159	Effects of the midnight temperature maximum observed in the thermosphere–ionosphere over the northeast of Brazil. Annales Geophysicae, 2017, 35, 953-963.	1.6	9
160	lonospheric Response to Disturbed Winds During the 29 October 2003 Geomagnetic Storm in the Brazilian Sector. Journal of Geophysical Research: Space Physics, 2019, 124, 9405-9419.	2.4	9
161	A coupled model of the D and E regions of Mars' ionosphere for flare and non-flare electron density profiles. Icarus, 2021, 361, 114403.	2.5	9
162	Particle ionization rates from total solar eclipse rocket ion composition results in the South Atlantic Geomagnetic Anomaly. Journal of Geophysical Research, 1979, 84, 4328-4334.	3.3	8

#	Article	IF	CITATIONS
163	Equatorial F-region irregularity latitudinal extension and dynamo electric field. Journal of Atmospheric and Solar-Terrestrial Physics, 1986, 48, 181-186.	0.9	8
164	Ionospheric Electron Content over Brazilian low latitude and its comparison with the IRI and SUPIM models. Advances in Space Research, 1996, 18, 245-248.	2.6	8
165	Occurrence of an additional layer in the ionosphere over Fortaleza. Advances in Space Research, 1999, 24, 1481-1484.	2.6	8
166	Estimation of the initial amplitude of plasma bubble seed perturbation from ionograms. Radio Science, 2012, 47, .	1.6	8
167	F ₃ layer observations at low and equatorial latitudes in Brazil. Geofisica International, 2000, 39, 57-64.	0.2	8
168	An empirical model for the ionospheric electron content at low latitude in Brazil and a comparison with IRI95. Advances in Space Research, 2003, 31, 629-634.	2.6	7
169	Numerical simulation of nighttime electron precipitation in the lower ionosphere over a sub-auroral region. Advances in Space Research, 2006, 37, 1051-1057.	2.6	7
170	Zonal wave structures in the nighttime tropospheric density and temperature and in the <i>D</i> region ionosphere over Mars: Modeling and observations. Journal of Geophysical Research, 2009, 114, .	3.3	7
171	Lunar tides in total electron content over Brazil. Journal of Geophysical Research: Space Physics, 2017, 122, 7519-7529.	2.4	7
172	Atmospheric Gravity Waves Observed in the Nightglow Following the 21 August 2017 Total Solar Eclipse. Geophysical Research Letters, 2020, 47, e2020GL088924.	4.0	7
173	New Findings of the Sporadic E (Es) Layer Development Around the Magnetic Equator During a High‧peed Solar (HSS) Wind Stream Event. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029416.	2.4	7
174	Permanent changes in sporadic E layers over Fortaleza, Brazil. Advances in Space Research, 1997, 20, 2165-2168.	2.6	6
175	Ionospheric modelling at low latitudes over Brazil during summer solar minimum. Advances in Space Research, 2000, 25, 133-138.	2.6	6
176	Equatorial Ionospheric Response to Different Estimated Disturbed Electric Fields as Investigated Using Sheffield University Plasmasphere Ionosphere Model at INPE. Journal of Geophysical Research: Space Physics, 2017, 122, 10,511.	2.4	6
177	Why Do Equatorial Plasma Bubbles Bifurcate?. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028609.	2.4	6
178	Further complexities on the pre-reversal vertical drift modeling over the Brazilian region: A comparison between long-term observations and model results. Journal of Space Weather and Space Climate, 2020, 10, 20.	3.3	6
179	Equatorial broad plasma depletions associated with the enhanced fountain effect. Journal of Geophysical Research: Space Physics, 2014, 119, 402-410.	2.4	5
180	Ionospheric response to 2-day planetary wave in the equatorial and low latitude regions. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 90-91, 164-171.	1.6	4

INEZ BATISTA

#	Article	IF	CITATIONS
181	Numerical simulation of equatorial plasma bubbles over Cachimbo: COPEX campaign. Advances in Space Research, 2014, 54, 443-455.	2.6	4
182	F Region Electric Field Effects on the Intermediate Layer Dynamics During the Evening Prereversal Enhancement at Equatorial Region Over Brazil. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028429.	2.4	4
183	Responses of intermediate layers to geomagnetic activity during the 2009 deep solar minimum over the Brazilian low-latitude sector. Annales Geophysicae, 2022, 40, 259-269.	1.6	4
184	Nitric oxide height distribution in the lower ionosphere from rocket ion composition results over a southern temperate latitude station. Journal of Geophysical Research, 1979, 84, 5267-5271.	3.3	3
185	The formation of an additional layer in the equatorial topside ionosphere. Advances in Space Research, 1997, 20, 1137-1140.	2.6	3
186	Nighttime F2-layer peak height changes due to thermospheric winds. Advances in Space Research, 1997, 20, 1141-1144.	2.6	3
187	Comparisons of IRI model and electron density data for the sub-equatorial station, Natal. Advances in Space Research, 2003, 31, 557-561.	2.6	3
188	Wave structures observed in the equatorial F-region plasma density and temperature during the sunset period. Advances in Space Research, 2016, 58, 2043-2051.	2.6	3
189	Unusual behavior of quiet-time zonal and vertical plasma drift velocities over Jicamarca during the recent extended solar minimum of 2008. Annales Geophysicae, 2017, 35, 1219-1229.	1.6	3
190	Postmidnight equatorial plasma irregularities on the June solstice during low solar activity – a case study. Annales Geophysicae, 2019, 37, 657-672.	1.6	3
191	MELISSA: System description and spectral features of pre―and postâ€midnight F â€region echoes. Journal of Geophysical Research: Space Physics, 2019, 124, 10482-10496.	2.4	3
192	Semimonthly oscillation observed in the start times of equatorial plasma bubbles. Annales Geophysicae, 2020, 38, 437-443.	1.6	3
193	Spread F modeling over Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161, 98-104.	1.6	2
194	Disconnection and Reconnection in Plasma Bubbles Observed by OI 630Ânm Airglow Images From Cariri Observatory. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
195	Ionosphere-atmosphere coupling via stratospheric ozone. Journal of Atmospheric and Solar-Terrestrial Physics, 1992, 54, 231-234.	0.9	1
196	Análise da ionosfera usando dados de receptores GPS durante um perÃodo de alta atividade solar e comparação com dados de Digissondas. Revista Brasileira De Geofisica, 2009, 27, 565-582.	0.2	1
197	Variability of the equatorial ionosphere induced by nonlinear interaction between an ultrafast Kelvin wave and the diurnal tide. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208, 105397.	1.6	1
198	Modelagem Ionosferica de Baixas Latitudes no Brasil para Verao de Atividade Solar Minima. , 1997, , .		1

#	Article	IF	CITATIONS
199	Comment on "Modeling the ion chemistry of the <i>D</i> region: A case study based upon the 1966 total solar eclipse―by Sears et al Journal of Geophysical Research, 1984, 89, 2406-2408.	3.3	0
200	Coupling parameterizations in magnetosphere-ionosphere-thermosphere modeling. Advances in Space Research, 1992, 12, 293-301.	2.6	0
201	Space science education and training in Brazil. Advances in Space Research, 1997, 20, 1421-1425.	2.6	0
202	Resultados Preliminares de Estudo do Comportamento da Camada F Ionosférica sob o Equador Magnético a partir de Dados de Digissonda. , 2005, , .		0
203	7th Latin-American Conference on Space Geophysics, Atibaia, SP, Brazil, March 29–April 2, 2004. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1641.	1.6	0
204	Correction to "Simulation of the sporadic <i>E</i> layer response to prereversal associated evening vertical electric field enhancement near dip equator― Journal of Geophysical Research, 2007, 112, .	3.3	0
205	Longitudinal variation of equatorial spread F occurrence over South America. , 2011, , .		0
206	Equatorial spread F echo and irregularity growth processes from conjugate point digital ionograms. , 2011, , .		0
207	A Simple Method to Calculate the Maximum Usable Frequency. , 2013, , .		0
208	Low latitude ionospheric variability during solar minimum 2008: Impact of Solar Wind High Speed Streams. , 2015, , .		0
209	Thermospheric Neutral Wind Role on the Equatorial and Low-latitude Ionosphere During Conjugate Point Experiment Campaign. , 2015, , .		0
210	Variability of the lunar semidiurnal tidal amplitudes in the ionosphere over Brazil. Annales Geophysicae, 2021, 39, 151-164.	1.6	0
211	Modeling and causative mechanism of OI 630.0Ânm nightglow emission over Cachoeira Paulista (22.7oS,) Tj ET	Qq110.7	'84314 rgBT
212	Ultra Fast Kelvin waves in the equatorial upper atmosphere. , 2007, , .		0
213	Oscilações de 6-7 dias na mesosfera e ionosfera equatorial. , 2009, , .		0
214	Mesosphere–Ionosphere Coupling Processes Observed in the F Layer Bottom-Side Oscillation. , 2011, , 163-175.		0
215	Measurements of the plasma vertical and zonal drift velocities: comparison of the results from Digisondes and Incoherent Scatter Radar during the COPEX campaign. , 2011, , .		0

216 Parameterized Regional Ionospheric Model: a new version. , 2011, , .

#	Article	IF	CITATIONS
217	A Simple Data Assimilation Criterion to be Used by a Physical Model. , 2017, , .		0