Salil A Lachke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1842358/publications.pdf Version: 2024-02-01

SALLI ALACHKE

#	Article	IF	CITATIONS
1	Variant analyses of candidate genes in orofacial clefts in multiâ€ethnic populations. Oral Diseases, 2022, 28, 1921-1935.	3.0	3
2	RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Experimental Eye Research, 2022, 214, 108889.	2.6	13
3	Whole-genome sequencing reveals de-novo mutations associated with nonsyndromic cleft lip/palate. Scientific Reports, 2022, 12, .	3.3	11
4	Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7. Frontiers in Cell and Developmental Biology, 2021, 9, 615761.	3.7	12
5	A large multiethnic GWAS meta-analysis of cataract identifies new risk loci and sex-specific effects. Nature Communications, 2021, 12, 3595.	12.8	39
6	A Novel Mutation in Cse1l Disrupts Brain and Eye Development with Specific Effects on Pax6 Expression. Journal of Developmental Biology, 2021, 9, 27.	1.7	1
7	Aged Nrf2-Null Mice Develop All Major Types of Age-Related Cataracts. , 2021, 62, 10.		13
8	Modeling ocular lens disease in <i>Xenopus</i> . Developmental Dynamics, 2020, 249, 610-621.	1.8	12
9	The master transcription factor SOX2, mutated in anophthalmia/microphthalmia, is post-transcriptionally regulated by the conserved RNA-binding protein RBM24 in vertebrate eye development. Human Molecular Genetics, 2020, 29, 591-604.	2.9	34
10	MS/MS in silico subtraction-based proteomic profiling as an approach to facilitate disease gene discovery: application to lens development and cataract. Human Genetics, 2020, 139, 151-184.	3.8	12
11	Six2 regulates Pax9 expression, palatogenesis and craniofacial bone formation. Developmental Biology, 2020, 458, 246-256.	2.0	13
12	The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology. Human Molecular Genetics, 2020, 29, 2076-2097.	2.9	27
13	The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Human Genetics, 2020, 139, 1541-1554.	3.8	17
14	High-throughput transcriptome analysis reveals that the loss of Pten activates a novel NKX6-1/RASGRP1 regulatory module to rescue microphthalmia caused by Fgfr2-deficient lenses. Human Genetics, 2019, 138, 1391-1407.	3.8	14
15	Missense Pathogenic variants in KIF4A Affect Dental Morphogenesis Resulting in X-linked Taurodontism, Microdontia and Dens-Invaginatus. Frontiers in Genetics, 2019, 10, 800.	2.3	7
16	Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Experimental Eye Research, 2019, 188, 107787.	2.6	14
17	Mutations in GDF11 and the extracellular antagonist, Follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans. Human Mutation, 2019, 40, 1813-1825.	2.5	26
18	A systematic genetic analysis and visualization of phenotypic heterogeneity among orofacial cleft GWAS signals. Genetic Epidemiology, 2019, 43, 704-716.	1.3	36

SALIL A LACHKE

#	Article	IF	CITATIONS
19	Pathogenic variants in <i>PLOD3</i> result in a Stickler syndrome-like connective tissue disorder with vascular complications. Journal of Medical Genetics, 2019, 56, 629-638.	3.2	23
20	Front Cover, Volume 40, Issue 10. Human Mutation, 2019, 40, i.	2.5	0
21	Genomic analyses in African populations identify novel risk loci for cleft palate. Human Molecular Genetics, 2019, 28, 1038-1051.	2.9	61
22	The Cataractâ€associated RNAâ€Binding Protein Celf1 Postâ€transcriptionally Regulates the Key Eye Transcription Factor Pax6. FASEB Journal, 2019, 33, 460.13.	0.5	1
23	Express: A database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues. Experimental Eye Research, 2018, 168, 57-68.	2.6	18
24	Mutation update of transcription factor genes <i>FOXE3</i> , <i>HSF4</i> , <i>MAF</i> , and <i>PITX3</i> causing cataracts and other developmental ocular defects. Human Mutation, 2018, 39, 471-494.	2.5	60
25	A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Human Genetics, 2018, 137, 315-328.	3.8	26
26	iSyTE 2.0: a database for expression-based gene discovery in the eye. Nucleic Acids Research, 2018, 46, D875-D885.	14.5	71
27	RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery. Human Genetics, 2018, 137, 941-954.	3.8	29
28	Mutations in the Epithelial Cadherin-p120-Catenin Complex Cause Mendelian Non-Syndromic Cleft Lip with or without Cleft Palate. American Journal of Human Genetics, 2018, 102, 1143-1157.	6.2	94
29	Cover Image, Volume 39, Issue 4. Human Mutation, 2018, 39, i-i.	2.5	0
30	The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. PLoS Genetics, 2018, 14, e1007278.	3.5	43
31	Investigation of RNA Granules in Lens Development. FASEB Journal, 2018, 32, 790.6.	0.5	0
32	Systems biology of lens development: A paradigm for disease gene discovery in the eye. Experimental Eye Research, 2017, 156, 22-33.	2.6	39
33	Exome sequencing provides additional evidence for the involvement of <i>ARHGAP29</i> in Mendelian orofacial clefting and extends the phenotypic spectrum to isolated cleft palate. Birth Defects Research, 2017, 109, 27-37.	1.5	49
34	Transcriptome analysis of developing lens reveals abundance of novel transcripts and extensive splicing alterations. Scientific Reports, 2017, 7, 11572.	3.3	28
35	N-myc regulates growth and fiber cell differentiation in lens development. Developmental Biology, 2017, 429, 105-117.	2.0	37
36	Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Human Genetics, 2017, 136, 205-225.	3.8	73

3

SALIL A LACHKE

#	Article	IF	CITATIONS
37	β1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis. , 2017, 58, 3896.		19
38	Cover Image, Volume 7, Issue 4. Wiley Interdisciplinary Reviews RNA, 2016, 7, i-i.	6.4	0
39	<scp>RNA</scp> â€binding proteins in eye development and disease: implication of conserved <scp>RNA</scp> granule components. Wiley Interdisciplinary Reviews RNA, 2016, 7, 527-557.	6.4	38
40	Crim1 regulates integrin signaling in murine lens development. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	11
41	Deficiency of the RNA binding protein caprin2 causes lens defects and features of peters anomaly. Developmental Dynamics, 2015, 244, 1313-1327.	1.8	42
42	Crim1 regulates integrin signaling in murine lens development. Development (Cambridge), 2015, 143, 356-66.	2.5	27
43	Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development (Cambridge), 2015, 143, 318-28.	2.5	59
44	Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes. Experimental Eye Research, 2015, 131, 42-55.	2.6	29
45	Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract. Human Genetics, 2015, 134, 717-735.	3.8	47
46	An integrative approach to analyze microarray datasets for prioritization of genes relevant to lens biology and disease. Genomics Data, 2015, 5, 223-227.	1.3	27
47	Pax6- and Six3-Mediated Induction of Lens Cell Fate in Mouse and Human ES Cells. PLoS ONE, 2014, 9, e115106.	2.5	15
48	Development of novel filtering criteria to analyze RNA-sequencing data obtained from the murine ocular lens during embryogenesis. Genomics Data, 2014, 2, 369-374.	1.3	20
49	Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development. Mechanisms of Development, 2014, 131, 86-110.	1.7	45
50	Characterization of Celf1 function in mouse lens cell lines (746.1). FASEB Journal, 2014, 28, 746.1.	0.5	0
51	Toward a systemsâ€level understanding of the Hedgehog signaling pathway: defining the complex, robust, and fragile. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 83-100.	6.6	9
52	Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Research, 2013, 41, 10199-10214.	14.5	54
53	An Evolutionarily Conserved Enhancer Regulates Bmp4 Expression in Developing Incisor and Limb Bud. PLoS ONE, 2012, 7, e38568.	2.5	20
54	<i>iSyTE</i> : <u>I</u> ntegrated <u>Sy</u> stems <u>T</u> ool for <u>E</u> ye Gene Discovery. , 2012, 53, 1617.		89

SALIL A LACHKE

#	Article	IF	CITATIONS
55	The cell adhesion gene PVRL3 is associated with congenital ocular defects. Human Genetics, 2012, 131, 235-250.	3.8	46
56	Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice. Journal of Biological Chemistry, 2011, 286, 33203-33212.	3.4	89
57	Mutations in the RNA Granule Component TDRD7 Cause Cataract and Glaucoma. Science, 2011, 331, 1571-1576.	12.6	186
58	RNA granules and cataract. Expert Review of Ophthalmology, 2011, 6, 497-500.	0.6	16
59	Building the developmental oculome: systems biology in vertebrate eye development and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 305-323.	6.6	37
60	Precise temporal control of the eye regulatory gene <i>Pax6</i> via enhancer-binding site affinity. Genes and Development, 2010, 24, 980-985.	5.9	97
61	Investigation of eight candidate genes on chromosome 1p36 for autosomal dominant total congenital cataract. Molecular Vision, 2008, 14, 1799-804.	1.1	4
62	Lens induction in vertebrates: Variations on a conserved theme of signaling events. Seminars in Cell and Developmental Biology, 2006, 17, 676-685.	5.0	63
63	The regulation of EFG1 in white-opaque switching in Candida albicans involves overlapping promoters. Molecular Microbiology, 2003, 48, 523-536.	2.5	28
64	Skin Facilitates <i>Candida albicans</i> Mating. Infection and Immunity, 2003, 71, 4970-4976.	2.2	122
65	Three Mating Type-Like Loci in Candida glabrata. Eukaryotic Cell, 2003, 2, 328-340.	3.4	64
66	Phenotypic Switching and Mating Type Switching of Candida glabrata at Sites ofColonization. Infection and Immunity, 2003, 71, 7109-7118.	2.2	76
67	Phenotypic switching and filamentation in Candida glabrata. Microbiology (United Kingdom), 2002, 148, 2661-2674.	1.8	80
68	Phenotypic Switching in Candida glabrata Involves Phase-Specific Regulation of the Metallothionein Gene MT-II and the Newly Discovered Hemolysin Gene HLP. Infection and Immunity, 2000, 68, 884-895.	2.2	80
69	Misexpression of the Opaque-Phase-Specific Gene <i>PEP1</i> (<i>SAP1</i>) in the White Phase of <i>Candida albicans</i> Confers Increased Virulence in a Mouse Model of Cutaneous Infection.	2.2	202