Yonggang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841982/publications.pdf

Version: 2024-02-01

38	783	16	26
papers	citations	h-index	g-index
54	54	54	842
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Snowball Earth prevention by dissolved organic carbon remineralization. Nature, 2007, 450, 813-818.	27.8	99
2	WATER TRAPPING ON TIDALLY LOCKED TERRESTRIAL PLANETS REQUIRES SPECIAL CONDITIONS. Astrophysical Journal Letters, 2014, 796, L22.	8.3	70
3	EFFECTS OF OBLIQUITY ON THE HABITABILITY OF EXOPLANETS AROUND M DWARFS. Astrophysical Journal Letters, 2016, 823, L20.	8.3	52
4	Motion of the Philippine Sea plate consistent with the NUVEL-1A model. Geophysical Journal International, 2002, 150, 809-819.	2.4	51
5	Thermal Structure of Lithosphere in North China. Chinese Journal of Geophysics, 2002, 45, 51-62.	0.2	47
6	Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 2018, 9, 3019.	12.8	41
7	A Possible Role of Dust in Resolving the Holocene Temperature Conundrum. Scientific Reports, 2018, 8, 4434.	3.3	37
8	A high-resolution climate simulation dataset for the past 540 million years. Scientific Data, 2022, 9, .	5.3	34
9	A carbon cycle coupled climate model of Neoproterozoic glaciation: Influence of continental configuration on the formation of a "soft snowballâ€, Journal of Geophysical Research, 2010, 115, .	3.3	33
10	The initiation of Neoproterozoic & amp; quot; snowball & amp; quot; climates in CCSM3: the influence of paleocontinental configuration. Climate of the Past, 2013, 9, 2555-2577.	3.4	29
11	Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse. Nature Geoscience, 2017, 10, 556-560.	12.9	25
12	Sea level variations during snowball Earth formation: 1. A preliminary analysis. Journal of Geophysical Research: Solid Earth, 2013, 118, 4410-4424.	3.4	24
13	Climate and Habitability of Kepler 452b Simulated with a Fully Coupled Atmosphere–Ocean General Circulation Model. Astrophysical Journal Letters, 2017, 835, L6.	8.3	24
14	Climate response to the meltwater runoff from Greenland ice sheet: evolving sensitivity to discharging locations. Climate Dynamics, 2018, 51, 1733-1751.	3.8	23
15	Large dry-humid fluctuations in Asia during the Late Cretaceous due to orbital forcing: A modeling study. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109230.	2.3	17
16	Drivers for Asynchronous Patterns of Dust Accumulation in Central and Eastern Asia and in Greenland During the Last Glacial Maximum. Geophysical Research Letters, 2021, 48, e2020GL091194.	4.0	17
17	Spatiotemporal Decompositions of Summer Drought in China and Its Teleconnection with Global Sea Surface Temperatures during 1901–2012. Journal of Climate, 2017, 30, 6391-6412.	3.2	16
18	Strong effects of tropical ice-sheet coverage and thickness on the hard snowball Earth bifurcation point. Climate Dynamics, 2017, 48, 3459-3474.	3.8	13

#	Article	IF	Citations
19	Future sea level rise along the coast of China and adjacent region under 1.5°C and 2.0°C global warming. Advances in Climate Change Research, 2020, 11, 227-238.	5.1	12
20	AMOC and Climate Responses to Dust Reduction and Greening of the Sahara during the Mid-Holocene. Journal of Climate, 2021, 34, 4893-4912.	3.2	12
21	A carbon cycle coupled climate model of Neoproterozoic glaciation: Explicit carbon cycle with stochastic perturbations. Journal of Geophysical Research, 2011, 116, .	3.3	11
22	Climate Conditions on the Tibetan Plateau During the Last Glacial Maximum and Implications for the Survival of Paleolithic Foragers. Frontiers in Earth Science, 2020, 8, .	1.8	11
23	Large influence of dust on the Precambrian climate. Nature Communications, 2020, 11, 4427.	12.8	10
24	Cracking the superheavy pyrite enigma: possible roles of volatile organosulfur compound emission. National Science Review, 2021, 8, nwab034.	9.5	9
25	Altitude of the East Asian Coastal Mountains and Their Influence on Asian Climate During Early Late Cretaceous. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034413.	3.3	8
26	Peltier & Liu reply. Nature, 2008, 456, E9-E10.	27.8	7
27	Sea level variations during snowball Earth formation and evolution: 2. The influence of Earth's rotation. Journal of Geophysical Research: Solid Earth, 2013, 118, 4425-4445.	3.4	6
28	Young Surface of Pluto's Sputnik Planitia Caused by Viscous Relaxation. Astrophysical Journal Letters, 2018, 856, L14.	8.3	6
29	Influence of Surface Topography on the Critical Carbon Dioxide Level Required for the Formation of a Modern Snowball Earth. Journal of Climate, 2018, 31, 8463-8479.	3.2	5
30	Large equatorial seasonal cycle during Marinoan snowball Earth. Science Advances, 2020, 6, eaay2471.	10.3	5
31	Climate Change of over 20 °C Induced by Continental Movement on a Synchronously Rotating Exoplanet. Astrophysical Journal Letters, 2021, 910, L8.	8.3	4
32	Impact of Dust on Climate and AMOC During the Last Glacial Maximum Simulated by CESM1.2. Geophysical Research Letters, 2022, 49, .	4.0	4
33	Elevation of the Gangdese Mountains and Their Impacts on Asian Climate During the Late Cretaceous—a Modeling Study. Frontiers in Earth Science, 2021, 9, .	1.8	4
34	Influence of Dust on the Initiation of Neoproterozoic Snowball Earth Events. Journal of Climate, 2021, , 1-44.	3.2	3
35	Simulated Impact of the Tibetan Glacier Expansion on the Eurasian Climate and Glacial Surface Mass Balance during the Last Glacial Maximum. Journal of Climate, 2020, 33, 6491-6509.	3.2	3
36	How Should Snowball Earth Deglaciation Start. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033833.	3.3	1

Yonggang Liu

#	Article	IF	CITATIONS
37	Determination of Euler parameters of Philippine Sea plate and the inferences. Science in China Series D: Earth Sciences, 2002, 45, 133-142.	0.9	O
38	Large true polar wander in a sea level model with application to the Neoproterozoic snowball Earth events. Earth and Planetary Science Letters, 2019, 520, 40-49.	4.4	0