Hirokatsu Kataoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841954/publications.pdf

Version: 2024-02-01

25 papers

195 citations

8 h-index 1199166 12 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

131 citing authors

#	Article	IF	CITATIONS
1	Predicting Appearance of Vehicles From Blind Spots Based on Pedestrian Behaviors at Crossroads. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 11917-11929.	4.7	4
2	Pre-Training Without Natural Images. International Journal of Computer Vision, 2022, 130, 990-1007.	10.9	13
3	Scene Change Captioning inÂReal Scenarios. Lecture Notes in Computer Science, 2022, , 405-419.	1.0	1
4	A Case Study on User Evaluation of Scientific Publication Summarization by Japanese Students. Applied Sciences (Switzerland), 2021, 11, 6287.	1.3	1
5	MV-FractalDB: Formula-driven Supervised Learning for Multi-view Image Recognition. , 2021, , .		5
6	Describing and Localizing Multiple Changes with Transformers. , 2021, , .		18
7	UVIRTâ€"Unsupervised Virtual Try-on Using Disentangled Clothing and Person Features. Sensors, 2020, 20, 5647.	2.1	6
8	3D-Aware Scene Change Captioning From Multiview Images. IEEE Robotics and Automation Letters, 2020, 5, 4743-4750.	3.3	18
9	Indoor Scene Change Captioning Based on Multimodality Data. Sensors, 2020, 20, 4761.	2.1	16
10	Multi-View Visual Question Answering with Active Viewpoint Selection. Sensors, 2020, 20, 2281.	2.1	8
11	Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database. Sensors, 2018, 18, 627.	2.1	26
12	Analyzing Fine Motion Considering Individual Habit for Appearance-Based Proficiency Evaluation. IEICE Transactions on Information and Systems, 2017, E100.D, 166-174.	0.4	2
13	Dominant Codewords Selection with Topic Model for Action Recognition. , 2016, , .		1
14	Human Action Recognition Without Human. Lecture Notes in Computer Science, 2016, , 11-17.	1.0	14
15	Recognition of Transitional Action for Short-Term Action Prediction using Discriminative Temporal CNN Feature. , 2016, , .		17
16	Fine-Grained Walking Activity Recognition via Driving Recorder Dataset. , 2015, , .		12
17	What is an Effective Feature for a Detection Problem? Feature Evaluation in Multiple Scenes. , 2015, , .		O
18	Appearance-based proficiency evaluation of micro-operation skill in removing individual habit., 2015,,.		1

#	Article	IF	Citations
19	Extended Co-occurrence HOG with Dense Trajectories for Fine-Grained Activity Recognition. Lecture Notes in Computer Science, 2015, , 336-349.	1.0	9
20	Evaluation of Vision-Based Human Activity Recognition in Dense Trajectory Framework. Lecture Notes in Computer Science, 2015, , 634-646.	1.0	4
21	Ball Trajectory Extraction in Team Sports Videos by Focusing on Ball Holder Candidates for a Play Search and 3D Virtual Display System. Journal of Signal Processing, 2015, 19, 147-150.	0.2	2
22	Quantized Feature with Angular Displacement for Activity Recognition. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 372-380.	0.1	0
23	Extended Feature Descriptor and Vehicle Motion Model with Tracking-by-Detection for Pedestrian Active Safety. IEICE Transactions on Information and Systems, 2014, E97.D, 296-304.	0.4	10
24	Improvement CoHOG Detection and Texture Matching Tracking for Pedestrian's Active Safety. IEEJ Transactions on Electronics, Information and Systems, 2012, 132, 1108-1115.	0.1	3
25	Age Should Not Matter: Towards More Accurate Pedestrian Detection via Self-Training. , 0, , .		1