

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841838/publications.pdf Version: 2024-02-01

		87723	110170
121	4,804	38	64
papers	citations	h-index	g-index
122	122	122	5466
all docs	docs citations	times ranked	citing authors

Dili

#	Article	IF	CITATIONS
1	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	3.3	839
2	Polymer-Mediated Alignment of Carbon Nanotubes under High Magnetic Fields. Advanced Materials, 2003, 15, 1918-1921.	11.1	163
3	Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Materialia, 2017, 126, 6-10.	2.6	116
4	Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses. Journal of Applied Physics, 2008, 103, .	1.1	115
5	Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft. Journal of the American Chemical Society, 2017, 139, 17525-17532.	6.6	100
6	Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy, 2018, 53, 683-689.	8.2	98
7	High thermoelectric performance of n-type Bi ₂ Te _{2.7} Se _{0.3} <i>via</i> nanostructure engineering. Journal of Materials Chemistry A, 2018, 6, 9642-9649.	5.2	93
8	Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles. Journal of Applied Physics, 2013, 114, .	1.1	91
9	Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy, 2020, 73, 104832.	8.2	81
10	Chemical synthesis of nanostructured Cu2Se with high thermoelectric performance. RSC Advances, 2014, 4, 8638.	1.7	79
11	Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures. Journal of Alloys and Compounds, 2013, 561, 105-108.	2.8	75
12	Synergistic band convergence and endotaxial nanostructuring: Achieving ultralow lattice thermal conductivity and high figure of merit in eco-friendly SnTe. Nano Energy, 2020, 67, 104261.	8.2	72
13	Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scripta Materialia, 2018, 147, 74-78.	2.6	67
14	Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi 2 Te 3) 0.2 (Sb 2 Te 3) 0.8 thermoelectric nanocomposite. Journal of Alloys and Compounds, 2016, 661, 389-395.	2.8	66
15	Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chemical Science, 2018, 9, 5967-5975.	3.7	66
16	Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe. ACS Nano, 2021, 15, 8204-8215.	7.3	66
17	Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Recordâ€High Thermoelectric Performance in Chalcopyrite. Advanced Materials, 2019, 31, e1905210.	11.1	61
18	Achieving high thermoelectric quality factor toward high figure of merit in GeTe. Materials Today Physics, 2020, 14, 100239.	2.9	61

#	Article	IF	CITATIONS
19	Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ as cathode materials for lithium ion batteries. RSC Advances, 2015, 5, 45351-45358.	1.7	59
20	Achieving high thermoelectric performance through constructing coherent interfaces and building interface potential barriers in n-type Bi ₂ Te ₃ /Bi ₂ Te _{2.7} Se _{0.3} nanocomposites. Journal of Materials Chemistry A, 2019, 7, 19120-19129.	5.2	59
21	Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5, 17803.	1.6	58
22	Enhanced thermopower and energy filtering effect from synergetic scattering at heterojunction potentials in the thermoelectric composites with semiconducting nanoinclusions. Journal of Alloys and Compounds, 2013, 558, 203-211.	2.8	57
23	Electrode activation via vesiculation: improved reversible capacity of γ-Fe ₂ 0 ₃ @C/MWNT composite anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9682-9688.	5.2	55
24	Co-precipitation synthesis of nanostructured Cu ₃ SbSe ₄ and its Sn-doped sample with high thermoelectric performance. Dalton Transactions, 2014, 43, 1888-1896.	1.6	54
25	Magnetostructural coupling and magnetocaloric effect in Ni–Mn–In. Applied Physics Letters, 2009, 95,	1.5	50
26	Magnetic and optical properties of multiferroic GdMnO3 nanoparticles. Journal of Applied Physics, 2010, 107, .	1.1	50
27	Enhanced thermoelectric performance of highly oriented polycrystalline SnSe based composites incorporated with SnTe nanoinclusions. Journal of Alloys and Compounds, 2016, 689, 87-93.	2.8	50
28	Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with nanophase Cu2Se. Journal of Materials Chemistry A, 2014, 2, 2891.	5.2	49
29	Nanoplasmonic Imaging of Latent Fingerprints with Explosive RDX Residues. Analytical Chemistry, 2015, 87, 9403-9407.	3.2	49
30	Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu ₃ SbSe ₄ nanoinclusions. Journal of Materials Chemistry C, 2015, 3, 7045-7052.	2.7	46
31	Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4. RSC Advances, 2015, 5, 31399-31403.	1.7	46
32	Enhanced thermoelectric performance of Cu2Se/Bi0.4Sb1.6Te3 nanocomposites at elevated temperatures. Applied Physics Letters, 2016, 108, .	1.5	46
33	Nanostructured SnSe integrated with Se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. Journal of Materials Chemistry A, 2019, 7, 15757-15765.	5.2	45
34	Enhanced power factor and thermoelectric performance for n-type Bi2Te2.7Se0.3 based composites incorporated with 3D topological insulator nanoinclusions. Nano Energy, 2021, 80, 105512.	8.2	44
35	Simultaneous enhancement in thermoelectric power factor and phonon blocking in hierarchical nanostructured β-Zn4Sb3-Cu3SbSe4. Applied Physics Letters, 2014, 104, .	1.5	43
36	Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5825-5830.	3.3	43

#	Article	IF	CITATIONS
37	Thermoelectric properties of CuSbSe2 and its doped compounds by Ti and Pb at low temperatures from 5to310K. Journal of Applied Physics, 2006, 100, 023713.	1.1	42
38	Enhanced thermoelectric performance via carrier energy filtering effect in β-Zn4Sb3 alloy bulk embedded with (Bi2Te3)0.2(Sb2Te3)0.8. Journal of Applied Physics, 2014, 115, .	1.1	42
39	High-performance eco-friendly MnTe thermoelectrics through introducing SnTe nanocrystals and manipulating band structure. Nano Energy, 2021, 81, 105649.	8.2	40
40	Boosting Thermoelectric Performance of Cu ₂ SnSe ₃ <i>via</i> Comprehensive Band Structure Regulation and Intensified Phonon Scattering by Multidimensional Defects. ACS Nano, 2021, 15, 10532-10541.	7.3	40
41	Realizing High Thermoelectric Performance below Phase Transition Temperature in Polycrystalline SnSe via Lattice Anharmonicity Strengthening and Strain Engineering. ACS Applied Materials & Interfaces, 2018, 10, 30558-30565.	4.0	39
42	Ultralow Thermal Conductivity and High Thermoelectric Performance of N-type Bi ₂ Te _{2.7} Se _{0.3} -Based Composites Incorporated with GaAs Nanoinclusions. ACS Applied Materials & Interfaces, 2020, 12, 37155-37163.	4.0	39
43	Magnetic properties and enhanced magnetic refrigeration in (Mn1â ^{~°} xFex)5Ge3 compounds. Journal of Applied Physics, 2007, 101, 123911.	1.1	38
44	Boosting Thermoelectric Performance of SnSe via Tailoring Band Structure, Suppressing Bipolar Thermal Conductivity, and Introducing Large Mass Fluctuation. ACS Applied Materials & Interfaces, 2019, 11, 45133-45141.	4.0	38
45	Phase transition associated with the variation of oxygen vacancy/ion distribution in the oxide-ion conductor La2Mo2-xWxO9. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2270-2278.	0.8	37
46	Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu ₂ Te Nanocrystals and Resonant Level Doping. ACS Nano, 2021, 15, 19345-19356.	7.3	37
47	Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis. Small, 2018, 14, e1703510.	5.2	35
48	High thermoelectric performance for an Ag ₂ Se-based material prepared by a wet chemical method. Materials Chemistry Frontiers, 2020, 4, 875-880.	3.2	35
49	Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1â^'xSnxSe4â^'ySy with a high thermoelectric performance. CrystEngComm, 2013, 15, 7166.	1.3	34
50	Thermoelectric Properties of Co-Doped TiS2. Journal of Electronic Materials, 2011, 40, 980-986.	1.0	33
51	Thermoelectric properties of hydrothermally synthesized Bi2Te3â^'Sex nanocrystals. Scripta Materialia, 2012, 67, 161-164.	2.6	33
52	Enhanced thermoelectric performance of n-type SnxBi2Te2.7Se0.3 based composites embedded with in-situ formed SnBi and Te nanoinclusions. Composites Part B: Engineering, 2020, 197, 108151.	5.9	32
53	Enhanced thermoelectric performance of BiSbTe-based composites incorporated with amorphous Si ₃ N ₄ nanoparticles. RSC Advances, 2015, 5, 34251-34256.	1.7	31
54	Light Element Doping and Introducing Spin Entropy: An Effective Strategy for Enhancement of Thermoelectric Properties in BiCuSeO. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15543-15551.	4.0	31

#	Article	IF	CITATIONS
55	Enhanced thermoelectric performance of Bi 0.4 Sb 1.6 Te 3 based composites with CuInTe 2 inclusions. Journal of Alloys and Compounds, 2018, 758, 72-77.	2.8	29
56	Enhanced thermoelectric figure of merit in p-type β-Zn ₄ Sb ₃ /Bi _{0.4} Sb _{1.6} Te ₃ nanocomposites. RSC Advances, 2016, 6, 12243-12248.	1.7	28
57	Spin canting and spin-flop transition in antiferromagnetic Cr2O3 nanocrystals. Journal of Applied Physics, 2009, 106, .	1.1	27
58	Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of β-Zn4Sb3 doped with Sm. Applied Physics Letters, 2013, 102, .	1.5	27
59	Resonant distortion of electronic density of states and enhancement of thermoelectric properties of β-Zn4Sb3 by Pr doping. Journal of Applied Physics, 2013, 113, 124901.	1.1	27
60	Improved Figure of Merit of Cu ₂ SnSe ₃ via Band Structure Modification and Energy-Dependent Carrier Scattering. ACS Applied Materials & Interfaces, 2020, 12, 19693-19700.	4.0	27
61	Enhanced thermoelectric properties of Ag-doped compounds CuAgxGa1â^'xTe2 (0⩽x⩽0.05). Journal of Alloys and Compounds, 2014, 586, 285-288.	2.8	24
62	Preparation and enhanced thermoelectric performance of Pb-doped tetrahedrite Cu12-xPbxSb4S13. Journal of Alloys and Compounds, 2018, 769, 478-483.	2.8	24
63	Electromagnetic wave absorption and dielectric-modulation of metallic perovskite lanthanum nickel oxide. RSC Advances, 2015, 5, 14584-14591.	1.7	23
64	High thermoelectric properties for Sn-doped AgSbSe 2. Journal of Alloys and Compounds, 2015, 635, 87-91.	2.8	23
65	Thermoelectric anisotropy of n-type Bi ₂ Te _{3â^'x} Se _x prepared by spark plasma sintering. RSC Advances, 2015, 5, 43717-43722.	1.7	22
66	Enhancement of thermoelectric performance of β-Zn ₄ Sb ₃ through resonant distortion of electronic density of states doped with Gd. Journal of Materials Chemistry A, 2015, 3, 11768-11772.	5.2	22
67	Realized high power factor and thermoelectric performance in Cu3SbSe4. Intermetallics, 2019, 109, 68-73.	1.8	22
68	Realization of High Thermoelectric Performance in Polycrystalline Tin Selenide through Schottky Vacancies and Endotaxial Nanostructuring. Chemistry of Materials, 2020, 32, 9761-9770.	3.2	22
69	Liquid-Phase Manipulation Securing Enhanced Thermoelectric Performance of Ag ₂ Se. ACS Applied Materials & Interfaces, 2021, 13, 34543-34549.	4.0	22
70	Realized high power factor and thermoelectric performance in Cu2SnSe3. Scripta Materialia, 2019, 159, 46-50.	2.6	21
71	Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared <i>via</i> a green and facile hydrothermal method. Nanoscale, 2020, 12, 5857-5865.	2.8	21
72	Permittivity and permeability of Zn(Fe)/ZnO nanocapsules and their microwave absorption in the 2–18 GHz range. Journal of Applied Physics, 2014, 115, 17A527.	1.1	20

#	Article	IF	CITATIONS
73	Achieving High Thermoelectric Performance in p-Type BST/PbSe Nanocomposites through the Scattering Engineering Strategy. ACS Applied Materials & Interfaces, 2020, 12, 46181-46189.	4.0	20
74	Permittivity and permeability of Fe(Tb) nanoparticles and their microwave absorption in the 2–18 GHz range. Journal of Applied Physics, 2010, 107, .	1.1	19
75	Enhanced thermoelectric performance of β-Zn4Sb3 based composites incorporated with large proportion of nanophase Cu3SbSe4. Journal of Alloys and Compounds, 2014, 588, 568-572.	2.8	19
76	High Thermoelectric Performance of SnTe via In Doping and Cu1.75Se Nanostructuring Approach. ACS Applied Energy Materials, 2019, 2, 8966-8973.	2.5	19
77	Achieving high power factor and thermoelectric performance through dual substitution of Zn and Se in tetrahedrites Cu12Sb4S13. Applied Physics Letters, 2019, 115, .	1.5	19
78	Ultralow Thermal Conductivity and Extraordinary Thermoelectric Performance Realized in Codoped Cu ₃ SbSe ₄ by Plasma Spark Sintering. ACS Applied Materials & Interfaces, 2020, 12, 3886-3892.	4.0	19
79	Improving the power factor and figure of merit of p-type CuSbSe ₂ <i>via</i> introducing Sb vacancies. Journal of Materials Chemistry C, 2021, 9, 14858-14865.	2.7	19
80	Enhanced thermoelectric performance of PbTe based materials by Bi doping and introducing MgO nanoparticles. Applied Physics Letters, 2020, 117, .	1.5	18
81	Improved Thermoelectric Performance of Cu ₁₂ Sb ₄ S ₁₃ through Gd-Substitution Induced Enhancement of Electronic Density of States and Phonon Scattering. ACS Applied Materials & Interfaces, 2021, 13, 25092-25101.	4.0	18
82	Creating high-dense stacking faults and endo-grown nanoneedles to enhance phonon scattering and improve thermoelectric performance of Cu2SnSe3. Nano Energy, 2022, 100, 107510.	8.2	18
83	Pressure dependence of the intersubband transition in strained In0.15Ga0.85As/GaAs multiple quantum wells. Applied Physics Letters, 1990, 57, 475-477.	1.5	16
84	Achieving a High Thermoelectric Performance of Tetrahedrites by Adjusting the Electronic Density of States and Enhancing Phonon Scattering. ACS Applied Materials & Interfaces, 2019, 11, 23361-23371.	4.0	16
85	Synergetic modulation of power factor and thermal conductivity for Cu3SbSe4-based system. Materials Today Energy, 2020, 18, 100491.	2.5	16
86	Ultralow Thermal Conductivity and Enhanced Figure of Merit for CuSbSe ₂ via Cd-Doping. ACS Applied Energy Materials, 2021, 4, 1637-1643.	2.5	16
87	Magnetic properties and spin-glass-like behavior in stoichiometric Mn3In compound. Journal of Applied Physics, 2009, 106, .	1.1	15
88	Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with graphite nanosheets. Applied Physics Letters, 2016, 108, .	1.5	15
89	Introducing PbSe quantum dots and manipulating lattice strain contributing to high thermoelectric performance in polycrystalline SnSe. Materials Today Physics, 2021, 21, 100542.	2.9	14
90	Magnetic and transport properties of Mn3+x Ga1â^'x N compounds. Journal of Materials Science, 2010, 45, 2770-2774.	1.7	13

#	Article	IF	CITATIONS
91	Synergistically optimized electrical and thermal properties by introducing electron localization and phonon scattering centers in CuGaTe ₂ with enhanced mechanical properties. Journal of Materials Chemistry C, 2020, 8, 7534-7542.	2.7	13
92	High thermoelectric performance of tetrahedrites through InSb inclusion. Materialia, 2018, 3, 169-173.	1.3	12
93	Magnetic properties and large cryogenic low-field magnetocaloric effect of HoCo2 nanoparticles without core/shell structure. Journal of Nanoparticle Research, 2010, 12, 1167-1172.	0.8	11
94	Alleviated Inhibition of Single Enzyme in Confined and Crowded Environment. Journal of Physical Chemistry Letters, 2019, 10, 82-89.	2.1	11
95	Raman Study of Cooper Pairing Instabilities in (Li1â^'xFex)OHFeSe. Physical Review Letters, 2020, 125, 217002.	2.9	11
96	Improving the thermoelectric performance of Cu ₂ SnSe ₃ <i>via</i> regulating micro- and electronic structures. Nanoscale, 2021, 13, 4233-4240.	2.8	11
97	Ultra-low thermal conductivity and high thermoelectric performance realized in a Cu ₃ SbSe ₄ based system. Materials Chemistry Frontiers, 2021, 5, 324-332.	3.2	10
98	Effects of Sb Deviation from Its Stoichiometric Ratio on the Micro- and Electronic Structures and Thermoelectric Properties of Cu ₁₂ Sb ₄ S ₁₃ . ACS Applied Materials & Interfaces, 2020, 12, 14145-14153.	4.0	9
99	Realization of high thermoelectric performance in solution-synthesized porous Zn and Ga codoped SnSe nanosheets. Journal of Materials Chemistry A, 2022, 10, 12429-12437.	5.2	9
100	Static Formation and Dissociation of Methane+Methylcyclohexane Hydrate for Gas Hydrate Production and Regasification. Chemical Engineering and Technology, 2011, 34, 1228-1234.	0.9	8
101	Porous flower-like ZnCo2O4 and ZnCo2O4@C composite: a facile controllable synthesis and enhanced electrochemical performance. Ionics, 2020, 26, 4479-4487.	1.2	8
102	Improved thermoelectric properties of gadolinium intercalated compounds GdxTiS2 at the temperaturesfrom 5 to 310 K. Journal of Materials Research, 2006, 21, 480-483.	1.2	7
103	The characterizations of superconducting MoC/Mo ₂ C nanocomposites embedded in a magnetic graphite matrix. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2919-2923.	0.8	7
104	Optimized thermoelectric properties of AgSbTe2 through adjustment of fabrication parameters. Electronic Materials Letters, 2015, 11, 133-137.	1.0	7
105	Enhanced Thermoelectric Performance of Cu3SbSe4 Doped with Alkali-Ion (Na and K). Electronic Materials Letters, 2020, 16, 99-105.	1.0	7
106	The effects of high-pressure compression on transport and thermoelectric properties of TiS2 at low temperatures from 5 to 310 K. Journal of Applied Physics, 2008, 103, 123704.	1.1	6
107	Thermoelectric Performance for SnSe Hot-Pressed at Different Temperature. Journal of Electronic Materials, 2017, 46, 79-84.	1.0	6
108	Thermoelectric properties of Bi0.4Sb1.6Te3-based composites with silicon nano-inclusions. Journal of Materials Science: Materials in Electronics, 2020, 31, 4808-4814.	1.1	6

#	Article	IF	CITATIONS
109	Transport and thermoelectric properties of Sr3(Ti0.95R0.05)2O7 (R = Ta, Nb, W) oxides. Journal of Applied Physics, 2012, 112, .	1.1	5
110	A novel magnetic mesoporous silicon composite combining the function of magnetic target drug delivery and magnetic-induction hyperthermia. Materials Technology, 2015, 30, 211-215.	1.5	5
111	Effects of Plasma Diamagnetic Drift on Alfvén Continua and Discrete Eigenmodes in Tokamaks. Journal of Fusion Energy, 2020, 39, 382-389.	0.5	5
112	Structural evolution of Ce1â^' <i>x</i> Gd <i>x</i> FeAsO0.84F0.16 superconductors. Journal of Applied Physics, 2011, 109, .	1.1	4
113	Ultralow Lattice Thermal Conductivity and High Thermoelectric Figure of Merit in Dually Substituted Cu ₁₂ Sb ₄ S ₁₃ Tetrahedrites. Advanced Electronic Materials, 2022, 8,	2.6	4
114	Magnetic transitions and magnetocaloric effects in Fe0.75Mn1.35As. Journal of Materials Science, 2009, 44, 3472-3475.	1.7	3
115	Metal-nonmetal transition and the electronic transport behavior in disordered PbO2-Ag2O-xCsystem synthesized by ball milling. Journal of Materials Science, 2005, 40, 1087-1091.	1.7	2
116	Disordering and the electronic transport behaviors of NbC–Al4C3–C composite. Journal of Materials Science, 2007, 42, 6929-6934.	1.7	2
117	Electrical and Magnetic Properties for Bulk FeSe and FeSe0.5Te0.5 Superconductors. Journal of Electronic Materials, 2021, 50, 941-946.	1.0	2
118	Magnetic properties and transport of epitaxial La0.47Ce0.20Ca0.33MnO3â^'δfilms. Journal of Applied Physics, 2009, 105, 07D701.	1.1	1
119	Optimization of thermoelectric transport performance of nickel-doped CuGaTe ₂ . Wuli Xuebao/Acta Physica Sinica, 2021, 70, 207101.	0.2	1
120	Electromagnetic modeling of parametric instability for slow waves in lower hybrid frequency range. AIP Conference Proceedings, 2020, , .	0.3	0
121	A novel magnetic mesoporous silicon composite combining the function of magnetic target drug delivery and magnetic-induction hyperthermia. Materials Technology, 0, , 1-5.	1.5	0