
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnostic criteria for mild cognitive impairment in Parkinson's disease: <i>Movement</i> Disorder Society Task Force guidelines. Movement Disorders, 2012, 27, 349-356.	3.9	1,908
2	A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation. Science, 2009, 325, 210-213.	12.6	1,414
3	The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. Brain, 2009, 132, 2958-2969.	7.6	842
4	Evolution of cognitive dysfunction in an incident Parkinson's disease cohort. Brain, 2007, 130, 1787-1798.	7.6	819
5	Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease. Lancet Neurology, The, 2010, 9, 1200-1213.	10.2	753
6	Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell, 2016, 167, 566-580.e19.	28.9	687
7	The cognitive ability of an incident cohort of Parkinson's patients in the UK. The CamPalGN study. Brain, 2004, 127, 550-560.	7.6	605
8	The CamPaIGN study of Parkinson's disease: 10-year outlook in an incident population-based cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1258-1264.	1.9	534
9	Targeting Huntingtin Expression in Patients with Huntington's Disease. New England Journal of Medicine, 2019, 380, 2307-2316.	27.0	493
10	Cognitive Impairments in Early Parkinson's Disease Are Accompanied by Reductions in Activity in Frontostriatal Neural Circuitry. Journal of Neuroscience, 2003, 23, 6351-6356.	3.6	476
11	l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia, 2003, 41, 1431-1441.	1.6	457
12	Cognitive Impairment in Parkinson's Disease: The Dual Syndrome Hypothesis. Neurodegenerative Diseases, 2013, 11, 79-92.	1.4	392
13	Microglial activation in presymptomatic Huntington's disease gene carriers. Brain, 2007, 130, 1759-1766.	7.6	385
14	Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain, 2002, 125, 584-594.	7.6	382
15	Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial. Lancet, The, 2014, 383, 1138-1146.	13.7	368
16	A cell atlas of human thymic development defines T cell repertoire formation. Science, 2020, 367, .	12.6	368
17	Disintegration of the Sleep-Wake Cycle and Circadian Timing in Huntington's Disease. Journal of Neuroscience, 2005, 25, 157-163.	3.6	361
18	The spectrum of nonmotor symptoms in early Parkinson disease. Neurology, 2013, 80, 276-281.	1.1	349

2

#	Article	IF	CITATIONS
19	Mechanisms of cognitive set flexibility in Parkinson's disease. Brain, 2001, 124, 2503-2512.	7.6	344
20	Sleep and Circadian Rhythm Regulation in Early Parkinson Disease. JAMA Neurology, 2014, 71, 589.	9.0	333
21	Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson's disease. Lancet Neurology, The, 2013, 12, 84-91.	10.2	302
22	Healthâ€related quality of life in early Parkinson's disease: The impact of nonmotor symptoms. Movement Disorders, 2014, 29, 195-202.	3.9	292
23	'The clocks that time us'—circadian rhythms in neurodegenerative disorders. Nature Reviews Neurology, 2014, 10, 683-693.	10.1	292
24	A pathophysiological model of freezing of gait in Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 333-338.	2.2	280
25	Human Trials of Stem Cell-Derived Dopamine Neurons for Parkinson's Disease: Dawn of a New Era. Cell Stem Cell, 2017, 21, 569-573.	11.1	275
26	Glucocerebrosidase mutations influence the natural history of Parkinson's disease in a community-based incident cohort. Brain, 2013, 136, 392-399.	7.6	266
27	Cells of the human intestinal tract mapped across space and time. Nature, 2021, 597, 250-255.	27.8	266
28	Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson's disease. Neuropsychologia, 2005, 43, 823-832.	1.6	265
29	L-DOPA Disrupts Activity in the Nucleus Accumbens during Reversal Learning in Parkinson's Disease. Neuropsychopharmacology, 2007, 32, 180-189.	5.4	262
30	Tau and αâ€ s ynuclein in susceptibility to, and dementia in, Parkinson's disease. Annals of Neurology, 2007, 62, 145-153.	5.3	256
31	Cell-based therapies for Parkinson disease—past insights and future potential. Nature Reviews Neurology, 2015, 11, 492-503.	10.1	242
32	Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 2004, 19, 755-760.	2.6	238
33	Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's. Annals of Neurology, 2016, 80, 674-685.	5.3	226
34	<scp>S</scp> erum immune markers and disease progression in an incident <scp>P</scp> arkinson's disease cohort (<scp>ICICLEâ€PD</scp>). Movement Disorders, 2016, 31, 995-1003.	3.9	211
35	Cerebrovascular and blood–brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology. Annals of Neurology, 2015, 78, 160-177.	5.3	204
36	Dissection of the genetics of Parkinson's disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21. Human Molecular Genetics, 2011, 20, 345-353.	2.9	202

#	Article	IF	CITATIONS
37	Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study. Lancet Neurology, The, 2014, 13, 1193-1201.	10.2	202
38	Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain, 2003, 126, 1127-1135.	7.6	201
39	The natural history of treated Parkinson's disease in an incident, community based cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1112-1118.	1.9	200
40	The heterogeneity of idiopathic Parkinson's disease. Journal of Neurology, 2002, 249, 138-145.	3.6	198
41	Baseline and longitudinal grey matter changes in newly diagnosed Parkinson's disease: ICICLE-PD study. Brain, 2015, 138, 2974-2986.	7.6	188
42	The Cambridge Behavioural Inventory revised. Dementia E Neuropsychologia, 2008, 2, 102-107.	0.8	181
43	Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8754-8759.	7.1	181
44	Microglial activation in regions related to cognitive function predicts disease onset in Huntington's disease: A multimodal imaging study. Human Brain Mapping, 2011, 32, 258-270.	3.6	181
45	Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain, 2006, 129, 877-886.	7.6	175
46	Catechol <i>O</i> -Methyltransferase val ¹⁵⁸ met Genotype Influences Frontoparietal Activity during Planning in Patients with Parkinson's Disease. Journal of Neuroscience, 2007, 27, 4832-4838.	3.6	175
47	Using executive heterogeneity to explore the nature of working memory deficits in Parkinson's disease. Neuropsychologia, 2003, 41, 645-654.	1.6	173
48	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	4.8	172
49	Immune problems in central nervous system cell therapy. NeuroRx, 2004, 1, 472-481.	6.0	169
50	Parkinson's disease and dopaminergic therapy—differential effects on movement, reward and cognition. Brain, 2008, 131, 2094-2105.	7.6	168
51	New approaches for brain repair—from rescue to reprogramming. Nature, 2018, 557, 329-334.	27.8	167
52	Attentional control in Parkinson's disease is dependent on COMT val158met genotype. Brain, 2008, 131, 397-408.	7.6	165
53	Unilateral transplantation of human primary fetal tissue in four patients with Huntington's disease: NEST-UK safety report ISRCTN no 36485475. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 678-685.	1.9	164
54	The basal ganglia and rule-governed language use: evidence from vascular and degenerative conditions. Brain, 2005, 128, 584-596.	7.6	161

#	Article	IF	CITATIONS
55	Mutant huntingtin is present in neuronal grafts in huntington disease patients. Annals of Neurology, 2014, 76, 31-42.	5.3	158
56	Pridopidine for the treatment of motor function in patients with Huntington's disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2011, 10, 1049-1057.	10.2	157
57	Hypothalamic involvement in Huntington's disease: an in vivo PET study. Brain, 2008, 131, 2860-2869.	7.6	155
58	Biomarkers and Parkinson's disease. Brain, 2004, 127, 1693-1705.	7.6	151
59	Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: effects of environmental enrichment. European Journal of Neuroscience, 2006, 23, 1829-1838.	2.6	151
60	Decreased hippocampal cell proliferation in R6/1 Huntington's mice. NeuroReport, 2004, 15, 811-813.	1.2	142
61	Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson's Disease. Journal of Neurology, 2009, 256, 493-498.	3.6	141
62	Systematic Review and UKâ€Based Study of <i>PARK2 (parkin), PINK1, PARK7 (DJâ€1)</i> and <i>LRRK2</i> in earlyâ€onset Parkinson's disease. Movement Disorders, 2012, 27, 1522-1529.	3.9	141
63	Designing stem-cell-based dopamine cell replacement trials for Parkinson's disease. Nature Medicine, 2019, 25, 1045-1053.	30.7	141
64	Intracellular SERS Nanoprobes For Distinction Of Different Neuronal Cell Types. Nano Letters, 2013, 13, 2463-2470.	9.1	140
65	The clinical heterogeneity of Parkinson's disease and its therapeutic implications. European Journal of Neuroscience, 2019, 49, 328-338.	2.6	137
66	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	4.8	134
67	Cognitive decline and quality of life in incident Parkinson's disease: The role of attention. Parkinsonism and Related Disorders, 2016, 27, 47-53.	2.2	133
68	Prediction of cognition in Parkinson's disease with a clinical–genetic score: a longitudinal analysis of nine cohorts. Lancet Neurology, The, 2017, 16, 620-629.	10.2	131
69	Gray and white matter imaging: <scp>A</scp> biomarker for cognitive impairment in early <scp>P</scp> arkinson's disease?. Movement Disorders, 2016, 31, 103-110.	3.9	129
70	Dynamic causal modelling of effective connectivity from fMRI: Are results reproducible and sensitive to Parkinson's disease and its treatment?. NeuroImage, 2010, 52, 1015-1026.	4.2	128
71	Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease. Movement Disorders, 2016, 31, 1518-1526.	3.9	128
72	Genetic impact on cognition and brain function in newly diagnosed Parkinson's disease: ICICLE-PD study. Brain, 2014, 137, 2743-2758.	7.6	127

#	Article	IF	CITATIONS
73	Imaging microglial activation in Huntington's disease. Brain Research Bulletin, 2007, 72, 148-151.	3.0	122
74	Genomewide association study of Parkinson's disease clinical biomarkers in 12 longitudinal patients' cohorts. Movement Disorders, 2019, 34, 1839-1850.	3.9	122
75	Neural grafting in Parkinson's disease. Progress in Brain Research, 2010, 184, 265-294.	1.4	120
76	Healthâ€related quality of life in Huntington's disease: Which factors matter most?. Movement Disorders, 2009, 24, 574-578.	3.9	119
77	Smaller intracranial volume in prodromal Huntington's disease: evidence for abnormal neurodevelopment. Brain, 2011, 134, 137-142.	7.6	118
78	Abnormalities of Neurogenesis in the R6/2 Mouse Model of Huntington's Disease Are Attributable to the <i>In Vivo</i> Microenvironment. Journal of Neuroscience, 2005, 25, 11564-11576.	3.6	116
79	Targeting impulsivity in Parkinson's disease using atomoxetine. Brain, 2014, 137, 1986-1997.	7.6	116
80	Cognitive Deficits and Psychosis in Parkinson???s Disease. CNS Drugs, 2006, 20, 477-505.	5.9	115
81	The role of tau in the pathological process and clinical expression of Huntington's disease. Brain, 2015, 138, 1907-1918.	7.6	115
82	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	27.8	114
83	Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease. Brain, 2014, 137, 1145-1155.	7.6	113
84	Neurodegeneration: a failure of neuroregeneration?. Lancet, The, 2001, 358, 1174-1176.	13.7	111
85	Severity of mild cognitive impairment in early Parkinson's disease contributes to poorer quality of life. Parkinsonism and Related Disorders, 2014, 20, 1071-1075.	2.2	110
86	The spectrum of cognitive impairment in Lewy body diseases. Movement Disorders, 2014, 29, 608-621.	3.9	107
87	A novel neuroprotective therapy for Parkinson's disease using a viral noncoding RNA that protects mitochondrial Complex I activity. Journal of Experimental Medicine, 2012, 209, 1-10.	8.5	105
88	Features of <i>GBA</i> -associated Parkinson's disease at presentation in the UK <i>Tracking Parkinson's</i> study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 702-709.	1.9	103
89	The BDNF Val66Met polymorphism has a gender specific influence on planning ability in Parkinson's disease. Journal of Neurology, 2005, 252, 833-838.	3.6	102
90	Habitual versus Goal-directed Action Control in Parkinson Disease. Journal of Cognitive Neuroscience, 2011, 23, 1218-1229.	2.3	102

#	Article	IF	CITATIONS
91	White matter pathology in Parkinson's disease: The effect of imaging protocol differences and relevance to executive function. NeuroImage, 2012, 62, 1675-1684.	4.2	102
92	Skin and platelet α-synuclein as peripheral biomarkers of Parkinson's disease. Neuroscience Letters, 2005, 381, 294-298.	2.1	101
93	Time course of dopamine neuron loss and glial response in the 6â€ <scp>OHDA</scp> striatal mouse model of <scp>P</scp> arkinson's disease. European Journal of Neuroscience, 2014, 39, 1042-1056.	2.6	101
94	Genomeâ€Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease. Movement Disorders, 2021, 36, 424-433.	3.9	101
95	Dopaminergic neuronal survival and the effects of bFGF in explant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Experimental Brain Research, 1995, 106, 275-82.	1.5	98
96	The relation between anger and different forms of disgust: Implications for emotion recognition impairments in Huntington's disease. Neuropsychologia, 2010, 48, 2719-2729.	1.6	98
97	Sleep deficits but no metabolic deficits in premanifest <scp>H</scp> untington's disease. Annals of Neurology, 2015, 78, 630-648.	5.3	95
98	Verbal fluency in Huntington's disease: a longitudinal analysis of phonemic and semantic clustering and switching. Neuropsychologia, 2002, 40, 1277-1284.	1.6	93
99	Defective emotion recognition in early HD is neuropsychologically and anatomically generic. Neuropsychologia, 2008, 46, 2152-2160.	1.6	93
100	Asymptomatic Sleep Abnormalities Are a Common Early Feature in Patients with Huntington's Disease. Current Neurology and Neuroscience Reports, 2011, 11, 211-217.	4.2	93
101	Improving Response Inhibition in Parkinson's Disease with Atomoxetine. Biological Psychiatry, 2015, 77, 740-748.	1.3	93
102	Long-Term Follow-Up of a Phase I/II Study of ProSavin, a Lentiviral Vector Gene Therapy for Parkinson's Disease. Human Gene Therapy Clinical Development, 2018, 29, 148-155.	3.1	92
103	Saccadic latency distributions in Parkinson's disease and the effects of l-dopa. Experimental Brain Research, 2006, 174, 7-18.	1.5	90
104	Onset and Progression of Pathologic Atrophy in Huntington Disease: A Longitudinal MR Imaging Study. American Journal of Neuroradiology, 2010, 31, 1036-1041.	2.4	90
105	Clinical Translation of Stem Cells in Neurodegenerative Disorders. Cell Stem Cell, 2012, 10, 151-155.	11.1	90
106	Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle, 2009, 8, 2888-2894.	2.6	88
107	Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson's disease. Brain, 2016, 139, 161-173.	7.6	88
108	REST suppression mediates neural conversion of adult human fibroblasts via microRNAâ€dependent and â€independent pathways. EMBO Molecular Medicine, 2017, 9, 1117-1131.	6.9	87

#	Article	IF	CITATIONS
109	A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease. EMBO Journal, 2016, 35, 1963-1978.	7.8	85
110	Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics. ACS Nano, 2016, 10, 307-316.	14.6	84
111	Recent developments in the treatment of Parkinson's Disease. F1000Research, 2020, 9, 862.	1.6	84
112	Anti-amyloid Compounds Inhibit α-Synuclein Aggregation Induced by Protein Misfolding Cyclic Amplification (PMCA). Journal of Biological Chemistry, 2014, 289, 11897-11905.	3.4	83
113	Increased thirst and drinking in Huntington's disease and the R6/2 mouse. Brain Research Bulletin, 2008, 76, 70-79.	3.0	82
114	Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease. Nature Genetics, 2021, 53, 787-793.	21.4	82
115	Huntington's disease patients have selective problems with insight. Movement Disorders, 2006, 21, 385-389.	3.9	79
116	Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy. Neurobiology of Aging, 2016, 48, 153-160.	3.1	79
117	Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Science Advances, 2021, 7, .	10.3	78
118	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77
119	Atomoxetine restores the response inhibition network in Parkinson's disease. Brain, 2016, 139, 2235-2248.	7.6	76
120	Visual hallucinations in neurological and ophthalmological disease: pathophysiology and management. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 512-519.	1.9	75
121	Neurotrophic factors as a therapeutic target for Parkinson's disease. Expert Opinion on Therapeutic Targets, 2008, 12, 437-447.	3.4	72
122	A Role for Complement in the Rejection of Porcine Ventral Mesencephalic Xenografts in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2000, 20, 3415-3424.	3.6	70
123	Strategies for bringing stem cell-derived dopamine neurons to the clinic. Progress in Brain Research, 2017, 230, 165-190.	1.4	70
124	Exploring causality of the association between smoking and Parkinson's disease. International Journal of Epidemiology, 2019, 48, 912-925.	1.9	70
125	Top–Down Attentional Control in Parkinson's Disease: Salient Considerations. Journal of Cognitive Neuroscience, 2010, 22, 848-859.	2.3	68
126	GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions. Cell Death and Disease, 2016, 7, e2206-e2206.	6.3	67

#	Article	IF	CITATIONS
127	Review: The spectrum of clinical features seen with alpha synuclein pathology. Neuropathology and Applied Neurobiology, 2016, 42, 6-19.	3.2	67
128	Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Neuroscience, 2001, 106, 201-216.	2.3	66
129	Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation. Cell Reports, 2018, 24, 1397-1406.	6.4	66
130	Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. European Journal of Neuroscience, 2002, 15, 1255-1266.	2.6	65
131	Determinants of delayed diagnosis in Parkinson's disease. Journal of Neurology, 2013, 260, 1978-1981.	3.6	65
132	Molecular and functional definition of the developing human striatum. Nature Neuroscience, 2014, 17, 1804-1815.	14.8	65
133	Exogenous neuropeptide Y promotes in vivo hippocampal neurogenesis. Hippocampus, 2011, 21, 233-238.	1.9	64
134	The effects of multidisciplinary rehabilitation in patients with earlyâ€toâ€middleâ€stage Huntington's disease: a pilot study. European Journal of Neurology, 2013, 20, 1325-1329.	3.3	64
135	Tracking Parkinson's: Study Design and Baseline Patient Data. Journal of Parkinson's Disease, 2015, 5, 947-959.	2.8	64
136	WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nature Communications, 2019, 10, 1498.	12.8	64
137	GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. Journal of Parkinson's Disease, 2020, 10, 875-891.	2.8	63
138	Olfactory abnormalities in Huntington's disease: Decreased plasticity in the primary olfactory cortex of R6/1 transgenic mice and reduced olfactory discrimination in patients. Brain Research, 2007, 1151, 219-226.	2.2	62
139	Gold nanoparticles explore cells: Cellular uptake and their use as intracellular probes. Methods, 2014, 68, 354-363.	3.8	62
140	Motor associations of iron accumulation in deep grey matter nuclei in Parkinson's disease: a crossâ€sectional study of ironâ€related magnetic resonance imaging susceptibility. European Journal of Neurology, 2017, 24, 357-365.	3.3	62
141	Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain, 2019, 142, 2828-2844.	7.6	62
142	Understanding the dopaminergic deficits in Parkinson's disease: Insights into disease heterogeneity. Journal of Clinical Neuroscience, 2009, 16, 620-625.	1.5	60
143	Predicting beneficial effects of atomoxetine and citalopram on response inhibition in <scp>P</scp> arkinson's disease with clinical and neuroimaging measures. Human Brain Mapping, 2016, 37, 1026-1037.	3.6	60
144	Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease. Scientific Reports, 2017, 7, 5280.	3.3	60

#	Article	IF	CITATIONS
145	Hypothalamic volume loss is associated with reduced melatonin output in Parkinson's disease. Movement Disorders, 2016, 31, 1062-1066.	3.9	59
146	Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson's disease. Brain, Behavior, and Immunity, 2020, 87, 473-488.	4.1	58
147	Dopamine and Huntington's disease. Expert Review of Neurotherapeutics, 2015, 15, 445-458.	2.8	57
148	The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington's disease: an exploratory study. Brain and Behavior, 2015, 5, e00312.	2.2	57
149	Are Stem Cell-Based Therapies for Parkinson's Disease Ready for the Clinic in 2016?. Journal of Parkinson's Disease, 2016, 6, 57-63.	2.8	57
150	Cortical dopamine dysfunction in symptomatic and premanifest Huntington's disease gene carriers. Neurobiology of Disease, 2010, 37, 356-361.	4.4	56
151	The catechol-O-methyltransferase Val158Met polymorphism modulates fronto-cortical dopamine turnover in early Parkinson's disease: a PET study. Brain, 2012, 135, 2449-2457.	7.6	56
152	Genetic and pathological links between Parkinson's disease and the lysosomal disorder Sanfilippo syndrome. Movement Disorders, 2012, 27, 312-315.	3.9	56
153	Switching between abstract rules reflects disease severity but not dopaminergic status in Parkinson's disease. Neuropsychologia, 2009, 47, 1117-1127.	1.6	55
154	The Effect of Truncated Human α-Synuclein (1–120) on Dopaminergic Cells in a Transgenic Mouse Model of Parkinson's Disease. Cell Transplantation, 2007, 16, 461-474.	2.5	54
155	Differences in the Presentation and Progression of Parkinson's Disease by Sex. Movement Disorders, 2021, 36, 106-117.	3.9	54
156	The role of learned irrelevance in attentional set-shifting impairments in Parkinson's disease Neuropsychology, 2006, 20, 578-588.	1.3	53
157	Predictors of punding in Parkinson's disease: Results from a questionnaire survey. Movement Disorders, 2007, 22, 2339-2345.	3.9	53
158	Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease. Brain, 2021, 144, 2513-2526.	7.6	53
159	Saccadic latency in Parkinson's disease correlates with executive function and brain atrophy, but not motor severity. Neurobiology of Disease, 2011, 43, 79-85.	4.4	52
160	A comparative study of preparation techniques for improving the viability of nigral grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplantation, 1995, 4, 173-200.	2.5	51
161	α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Experimental Neurology, 2016, 285, 72-81.	4.1	51
162	Relationship between CAG repeat length and brain volume in premanifest and early Huntington's disease. Journal of Neurology, 2009, 256, 203-212.	3.6	50

#	Article	IF	CITATIONS
163	Patients Beware: Commercialized Stem Cell Treatments on the Web. Cell Stem Cell, 2010, 7, 43-49.	11.1	50
164	Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain. Progress in Neurobiology, 2013, 110, 63-73.	5.7	50
165	Hippocampal dysfunction defines disease onset in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 975-981.	1.9	50
166	Anxiety is associated with cognitive impairment in newly-diagnosed Parkinson's disease. Parkinsonism and Related Disorders, 2017, 36, 63-68.	2.2	50
167	Treating Parkinson's disease in the 21st century: Can stem cell transplantation compete?. Journal of Comparative Neurology, 2014, 522, 2802-2816.	1.6	49
168	Aberrant nigral diffusion in Parkinson's disease: A longitudinal diffusion tensor imaging study. Movement Disorders, 2016, 31, 1020-1026.	3.9	49
169	Intra―and interâ€network functional alterations in <scp>P</scp> arkinson's disease with mild cognitive impairment. Human Brain Mapping, 2017, 38, 1702-1715.	3.6	49
170	Coping processes and healthâ€related quality of life in Parkinson's disease. International Journal of Geriatric Psychiatry, 2011, 26, 247-255.	2.7	48
171	Longitudinal whole-brain atrophy and ventricular enlargement in nondemented Parkinson's disease. Neurobiology of Aging, 2017, 55, 78-90.	3.1	48
172	Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?. Frontiers in Neuroscience, 2017, 11, 530.	2.8	48
173	Relationship between neuromelanin and dopamine terminals within the Parkinson's nigrostriatal system. Brain, 2019, 142, 2023-2036.	7.6	48
174	Functional integration of neural grafts in Parkinson's disease. Nature Neuroscience, 1999, 2, 1047-1048.	14.8	47
175	Automated quantification of caudate atrophy by local registration of serial MRI: Evaluation and application in Huntington's disease. NeuroImage, 2009, 47, 1659-1665.	4.2	46
176	How vital is sleep in Huntington's disease?. Journal of Neurology, 2010, 257, 882-897.	3.6	46
177	Sham neurosurgical procedures in clinical trials for neurodegenerative diseases: scientific and ethical considerations. Lancet Neurology, The, 2012, 11, 643-650.	10.2	46
178	Equating scores of the University of Pennsylvania Smell Identification Test and Sniffin' Sticks test in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2016, 33, 96-101.	2.2	46
179	Clusterin secreted by astrocytes enhances neuronal differentiation from human neural precursor cells. Cell Death and Differentiation, 2011, 18, 907-913.	11.2	45
180	¹¹ Câ€PE2I and ¹⁸ Fâ€Dopa PET for assessing progression rate in Parkinson's: A longitudinal study. Movement Disorders, 2018, 33, 117-127.	3.9	45

#	Article	IF	CITATIONS
181	The Dementias Platform UK (DPUK) Data Portal. European Journal of Epidemiology, 2020, 35, 601-611.	5.7	45
182	Task-Set Switching Deficits in Early-Stage Huntington's Disease: Implications for Basal Ganglia Function. Journal of Cognitive Neuroscience, 2003, 15, 629-642.	2.3	45
183	The use of quantitative oculometry in the assessment of Huntington's disease. Experimental Brain Research, 2006, 169, 237-245.	1.5	44
184	Huntington's disease: changes in saccades and hand-tapping over 3Âyears. Journal of Neurology, 2010, 257, 1890-1898.	3.6	44
185	Cellular and molecular aspects of striatal development. Brain Research Bulletin, 2001, 55, 533-540.	3.0	43
186	The cellular repair of the brain in Parkinson's disease—past, present and future. Transplant Immunology, 2004, 12, 321-342.	1.2	43
187	No Evidence for Association with Parkinson Disease for 13 Single-Nucleotide Polymorphisms Identified by Whole-Genome Association Screening. American Journal of Human Genetics, 2006, 78, 1088-1090.	6.2	43
188	Cell-based therapies for Parkinson's disease. Expert Review of Neurotherapeutics, 2011, 11, 831-844.	2.8	42
189	Development and external validation of a prognostic model in newly diagnosed Parkinson disease. Neurology, 2016, 86, 986-993.	1.1	42
190	The Peripheral Inflammatory Response to Alpha-Synuclein and Endotoxin in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 946.	2.4	42
191	The role of the amygdala during emotional processing in Huntington's disease: From pre-manifest to late stage disease. Neuropsychologia, 2015, 70, 80-89.	1.6	41
192	The role of anxiety in the development of levodopa-induced dyskinesias in an animal model of Parkinson's disease, and the effect of chronic treatment with the selective serotonin reuptake inhibitor citalopram. Psychopharmacology, 2008, 197, 279-293.	3.1	40
193	The coding and long noncoding single-cell atlas of the developing human fetal striatum. Science, 2021, 372, .	12.6	40
194	Survival of Nigral Grafts within the Striatum of Marmosets with 6-Ohda Lesions Depends Critically on Donor Embryo Age. Cell Transplantation, 1997, 6, 557-569.	2.5	39
195	The use of the Actiwatch–Neurologica® system to objectively assess the involuntary movements and sleep–wake activity in patients with mild–moderate Huntington's disease. Journal of Neurology, 2005, 252, 642-647.	3.6	39
196	Saccadometry: a new tool for evaluating presymptomatic Huntington patients. NeuroReport, 2007, 18, 1133-1136.	1.2	39
197	Motor Complications in Parkinson's Disease: 13â€Year Followâ€up of the CamPalGN Cohort. Movement Disorders, 2020, 35, 185-190.	3.9	39
198	Successful treatment of stiff man syndrome with intravenous immunoglobulin Journal of Neurology, Neurosurgery and Psychiatry, 1997, 62, 426-427.	1.9	38

#	Article	IF	CITATIONS
199	Addenbrooke's Cognitive Examinationâ€Revised for mild cognitive impairment in Parkinson's disease. Movement Disorders, 2012, 27, 1173-1177.	3.9	38
200	Striatal allografts in patients with Huntington's disease: impact of diminished astrocytes and vascularization on graft viability. Brain, 2013, 136, 433-443.	7.6	38
201	Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson's disease. Experimental Brain Research, 2003, 151, 204-217.	1.5	37
202	The effects of modafinil on mood and cognition in Huntington's disease. Psychopharmacology, 2008, 199, 29-36.	3.1	37
203	The val158met COMT polymorphism's effect on atrophy in healthy aging and Parkinson's disease. Neurobiology of Aging, 2010, 31, 1064-1068.	3.1	37
204	Neural Tissue Xenotransplantation: What is Needed Prior to Clinical Trials in Parkinson's Disease?. Cell Transplantation, 2000, 9, 235-246.	2.5	36
205	3Dâ€Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices. Advanced Science, 2020, 7, 2001150.	11.2	36
206	Repairing the brain in Parkinson's disease: Where next?. Movement Disorders, 2002, 17, 233-241.	3.9	35
207	Linked Clinical Trials – The Development of New Clinical Learning Studies in Parkinson's Disease Using Screening of Multiple Prospective New Treatments. Journal of Parkinson's Disease, 2013, 3, 231-239.	2.8	35
208	Association between MAPT haplotype and memory function in patients with Parkinson's disease and healthy aging individuals. Neurobiology of Aging, 2015, 36, 1519-1528.	3.1	35
209	Autonomic Dysfunction in Early Parkinson's Disease: Results from the United Kingdom Tracking Parkinson's Study. Movement Disorders Clinical Practice, 2017, 4, 509-516.	1.5	35
210	Longitudinal diffusion tensor imaging changes in early Parkinson's disease: ICICLE-PD study. Journal of Neurology, 2018, 265, 1528-1539.	3.6	35
211	Serum Raman spectroscopy as a diagnostic tool in patients with Huntington's disease. Chemical Science, 2020, 11, 525-533.	7.4	35
212	Developing Stem Cell Therapies for Parkinson's Disease: Waiting Until the Time Is Right. Cell Stem Cell, 2014, 15, 539-542.	11.1	34
213	Which Patients with Parkinson's Disease Participate in Clinical Trials? One Centre's Experiences with a New Cell Based Therapy Trial (TRANSEURO). Journal of Parkinson's Disease, 2014, 4, 671-676.	2.8	34
214	Senescence and Inflammatory Markers for Predicting Clinical Progression in Parkinson's Disease: The ICICLE-PD Study. Journal of Parkinson's Disease, 2020, 10, 193-206.	2.8	34
215	The importance of A9 dopaminergic neurons in mediating the functional benefits of fetal ventral mesencephalon transplants and levodopa-induced dyskinesias. Neurobiology of Disease, 2007, 25, 594-608.	4.4	33
216	Human fetal neural precursor cells can up-regulate MHC class I and class II expression and elicit CD4 and CD8 T cell proliferation. Neurobiology of Disease, 2011, 41, 407-414.	4.4	33

ROGER A. BARKER

#	Article	IF	CITATIONS
217	Monocyte Function in Parkinson's Disease and the Impact of Autologous Serum on Phagocytosis. Frontiers in Neurology, 2018, 9, 870.	2.4	33
218	Portrait of blood-derived extracellular vesicles in patients with Parkinson's disease. Neurobiology of Disease, 2019, 124, 163-175.	4.4	33
219	Cerebrospinal Fluid Cytokines and Neurodegenerationâ€Associated Proteins in Parkinson's Disease. Movement Disorders, 2020, 35, 1062-1066.	3.9	33
220	Hand tapping: A simple, reproducible, objective marker of motor dysfunction in Huntington's disease. Journal of Neurology, 2008, 255, 1145-1152.	3.6	32
221	The search for a curative cell therapy in Parkinson's disease. Journal of the Neurological Sciences, 2008, 265, 32-42.	0.6	32
222	Graft-Induced Dyskinesias in Parkinson's Disease: What Is It All About?. Cell Stem Cell, 2010, 7, 148-149.	11.1	32
223	The glial response to intracerebrally delivered therapies for neurodegenerative disorders: is this a critical issue?. Frontiers in Pharmacology, 2014, 5, 139.	3.5	32
224	Long-Term Hibernation of Human Fetal Striatal Tissue does Not Adversely Affect its Differentiation In Vitro or Graft Survival: Implications for Clinical Trials in Huntington's Disease. Cell Transplantation, 2003, 12, 687-695.	2.5	31
225	The search for biomarkers in Parkinson's disease: a critical review. Expert Review of Neurotherapeutics, 2008, 8, 1841-1852.	2.8	31
226	The Addenbrooke's Cognitive Examination-Revised accurately detects cognitive decline in Huntington's disease. Journal of Neurology, 2013, 260, 2777-2785.	3.6	31
227	Personality Affects Aspects of Health-Related Quality of Life in Parkinson's Disease via Psychological Coping Strategies. Journal of Parkinson's Disease, 2013, 3, 45-53.	2.8	31
228	Recent Advances in the Development of Stemâ€Cellâ€Derived Dopaminergic Neuronal Transplant Therapies for Parkinson's Disease. Movement Disorders, 2021, 36, 1772-1780.	3.9	31
229	Parkinson's disease and healthy aging: Independent and interacting effects on action selection. Human Brain Mapping, 2010, 31, 1886-1899.	3.6	30
230	Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens. Neurobiology of Disease, 2013, 49, 118-127.	4.4	30
231	Successful treatment of intractable epilepsia partialis continua with multiple subpial transections. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 65, 137a-138a.	1.9	30
232	Hibernated Human Fetal Striatal Tissue: Successful Transplantation in a Rat Model of Huntington's Disease. Cell Transplantation, 2000, 9, 743-749.	2.5	29
233	Impaired dimensional selection but intact use of reward feedback during visual discrimination learning in Parkinson's disease. Neuropsychologia, 2006, 44, 1290-1304.	1.6	29
234	Neural grafting for Parkinson's disease: challenges and prospects. Neural Regeneration Research, 2017, 12, 389.	3.0	29

ROGER A. BARKER

#	Article	IF	CITATIONS
235	Current status of clinical trials of neural transplantation in Parkinson's disease. Progress in Brain Research, 2012, 200, 169-198.	1.4	27
236	Early constipation predicts faster dementia onset in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 45.	5.3	27
237	Single cell derived mRNA signals across human kidney tumors. Nature Communications, 2021, 12, 3896.	12.8	27
238	Predicting clinical diagnosis in Huntington's disease: An imaging polymarker. Annals of Neurology, 2018, 83, 532-543.	5.3	26
239	The Treatment of Sleep Dysfunction in Neurodegenerative Disorders. Neurotherapeutics, 2021, 18, 202-216.	4.4	26
240	Deep Brain Stimulation: Eye Movements Reveal Anomalous Effects of Electrode Placement and Stimulation. PLoS ONE, 2012, 7, e32830.	2.5	25
241	Advancing pharmacotherapy for treating Huntington's disease: a review of the existing literature. Expert Opinion on Pharmacotherapy, 2016, 17, 41-52.	1.8	25
242	iPSC Modeling of Presenilin1 Mutation in Alzheimer's Disease with Cerebellar Ataxia. Experimental Neurobiology, 2018, 27, 350-364.	1.6	25
243	Huntington's disease patients display progressive deficits in hippocampal-dependent cognition during a task of spatial memory. Cortex, 2019, 119, 417-427.	2.4	25
244	Parkinson disease and growth factors — is GDNF good enough?. Nature Reviews Neurology, 2019, 15, 312-314.	10.1	25
245	Proton magnetic resonance spectroscopy in a pathologically confirmed acute demyelinating lesion. Journal of Neurology, 1997, 244, 204-207.	3.6	24
246	The Future of Cell-Based Transplantation Therapies for Neurodegenerative Disorders. Journal of Hematotherapy and Stem Cell Research, 2003, 12, 635-642.	1.8	24
247	Learning to be inflexible: Enhanced attentional biases in Parkinson's disease. Cortex, 2016, 82, 24-34.	2.4	24
248	Pro‣accades Predict Cognitive Decline in Parkinson's Disease: ICICLEâ€PD. Movement Disorders, 2019, 34, 1690-1698.	3.9	24
249	A blueprint for translational regenerative medicine. Science Translational Medicine, 2020, 12, .	12.4	24
250	Systemic α-synuclein injection triggers selective neuronal pathology as seen in patients with Parkinson's disease. Molecular Psychiatry, 2021, 26, 556-567.	7.9	24
251	Staging and Preparation of Human Fetal Striatal Tissue for Neural Transplantation in Huntington's Disease. Cell Transplantation, 2003, 12, 679-686.	2.5	23
252	Investigation of TGFB2 as a candidate gene in multiple sclerosis and Parkinson's disease. Journal of Neurology, 2007, 254, 846-848.	3.6	23

#	Article	IF	CITATIONS
253	Are Trials of Intravascular Infusions of Autologous Mesenchymal Stem Cells in Patients With Multiple System Atrophy Currently Justified, and Are They Effective?. Clinical Pharmacology and Therapeutics, 2008, 83, 663-665.	4.7	23
254	Biomarkers in Huntington's and Parkinson's Disease. Annals of the New York Academy of Sciences, 2009, 1180, 97-110.	3.8	23
255	Huntingtin-lowering strategies for Huntington's disease. Expert Opinion on Investigational Drugs, 2020, 29, 1125-1132.	4.1	23
256	The incidence of Parkinson's disease in the North-East of England. Age and Ageing, 2014, 43, 257-263.	1.6	22
257	Mild Cognitive Impairment and Parkinson's Disease - Something to Remember. Journal of Parkinson's Disease, 2015, 4, 651-656.	2.8	22
258	Quality of Life and Mild Cognitive Impairment in Early Parkinson's Disease: Does Subtype Matter?. Journal of Parkinson's Disease, 2015, 4, 331-336.	2.8	22
259	The Challenges of First-in-Human Stem Cell Clinical Trials: What Does This Mean for Ethics and Institutional Review Boards?. Stem Cell Reports, 2018, 10, 1429-1431.	4.8	22
260	Animal Models of Parkinson's Disease: Are They Useful or Not?. Journal of Parkinson's Disease, 2020, 10, 1335-1342.	2.8	22
261	New Therapeutic Approaches to Parkinson's Disease Including Neural Transplants. Neurorehabilitation and Neural Repair, 2005, 19, 155-181.	2.9	21
262	The Current Status of Neural Grafting in the Treatment of Huntington?s Disease. A Review. Frontiers in Integrative Neuroscience, 2011, 5, 78.	2.1	21
263	Rating Apathy in Huntington's Disease: Patients and Companions Agree. Journal of Huntington's Disease, 2015, 4, 49-59.	1.9	21
264	Variation in Recent Onset Parkinson's Disease: Implications for Prodromal Detection. Journal of Parkinson's Disease, 2016, 6, 289-300.	2.8	21
265	Olfaction in <i>Parkin</i> single and compound heterozygotes in a cohort of young onset Parkinson's disease patients. Acta Neurologica Scandinavica, 2016, 134, 271-276.	2.1	21
266	Normal aging and Parkinson's disease are associated with the functional decline of distinct frontal-striatal circuits. Cortex, 2017, 93, 178-192.	2.4	21
267	An open-label study to assess the feasibility and tolerability of rilmenidine for the treatment of Huntington's disease. Journal of Neurology, 2017, 264, 2457-2463.	3.6	21
268	A Touchscreen Motivation Assessment Evaluated in Huntington's Disease Patients and R6/1 Model Mice. Frontiers in Neurology, 2019, 10, 858.	2.4	21
269	Implantation of the clinical-grade human neural stem cell line, <i>CTX0E03</i> , rescues the behavioral and pathological deficits in the quinolinic acid-lesioned rodent model of Huntington's disease. Stem Cells, 2020, 38, 936-947.	3.2	21
270	Time on timing: Dissociating premature responding from interval sensitivity in Parkinson's disease. Movement Disorders, 2016, 31, 1163-1172.	3.9	20

#	Article	IF	CITATIONS
271	Gene and Cell-Based Therapies for Parkinson's Disease: Where Are We?. Neurotherapeutics, 2020, 17, 1539-1562.	4.4	20
272	The sleep and circadian problems of Huntington's disease: when, why and their importance. Journal of Neurology, 2021, 268, 2275-2283.	3.6	20
273	Prospects for the treatment of Parkinson's disease using neurotrophic factors. Expert Opinion on Pharmacotherapy, 2001, 2, 1531-1543.	1.8	19
274	Rate and acceleration of whole-brain atrophy in premanifest and early Huntington's disease. Movement Disorders, 2010, 25, 888-895.	3.9	19
275	Defining meaningful outcome measures in trials of disease-modifying therapies in Parkinson's disease. Expert Opinion on Pharmacotherapy, 2011, 12, 1249-1258.	1.8	19
276	Dynamic and Cell-Specific DACH1 Expression in Human Neocortical and Striatal Development. Cerebral Cortex, 2019, 29, 2115-2124.	2.9	19
277	Distinct subcellular autophagy impairments in induced neurons from patients with Huntington's disease. Brain, 2022, 145, 3035-3057.	7.6	19
278	Noradrenergic deficits contribute to apathy in Parkinson's disease through the precision of expected outcomes. PLoS Computational Biology, 2022, 18, e1010079.	3.2	19
279	Limbic neurogenesis/plasticity in the R6/2 mouse model of Huntington's disease. NeuroReport, 2006, 17, 1623-1627.	1.2	18
280	Pax7 expression in the adult rat superior colliculus following optic nerve injury. NeuroReport, 2007, 18, 105-109.	1.2	18
281	Parkinson's disease – the continuing search for biomarkers. Clinical Chemistry and Laboratory Medicine, 2011, 49, 393-401.	2.3	18
282	A Professional Standard for Informed Consent for Stem Cell Therapies. JAMA - Journal of the American Medical Association, 2019, 322, 1651.	7.4	18
283	Dual modulation of neuronâ \in specific microRNAs and the REST complex promotes functional maturation of human adult induced neurons. FEBS Letters, 2019, 593, 3370-3380.	2.8	18
284	The future of cell therapies in the treatment of Parkinson's disease. Expert Opinion on Biological Therapy, 2007, 7, 1487-1498.	3.1	17
285	Anticholinergic Load: Is there a Cognitive Cost in Early Parkinson's Disease?. Journal of Parkinson's Disease, 2015, 5, 743-747.	2.8	17
286	Cell therapies for Parkinson's disease: how far have we come?. Regenerative Medicine, 2016, 11, 777-786.	1.7	17
287	Using Medical Claims Analyses to Understand Interventions for Parkinson Patients. Journal of Parkinson's Disease, 2018, 8, 45-58.	2.8	17
288	Longitudinal functional connectivity changes related to dopaminergic decline in Parkinson's disease. NeuroImage: Clinical, 2020, 28, 102409.	2.7	17

ROGER A. BARKER

#	Article	lF	CITATIONS
289	Fetal Porcine Dopaminergic Cell Survival in Vitro and its Relationship to Embryonic Age. Cell Transplantation, 1999, 8, 593-599.	2.5	16
290	Migration and differentiation of transplanted human neural precursor cells. NeuroReport, 2003, 14, 1257-1262.	1.2	16
291	Modelling of a targeted nanotherapeutic †stroma' to deliver the cytokine LIF, or XAV939, a potent inhibitor of Wnt†l²-catenin signalling, for use in human fetal dopaminergic grafts in Parkinson's disease. DMM Disease Models and Mechanisms, 2014, 7, 1193-203.	2.4	16
292	Parkinson's Disease Case Ascertainment in the EPIC Cohort: The NeuroEPIC4PD Study. Neurodegenerative Diseases, 2015, 15, 331-338.	1.4	16
293	Simple Generation of a High Yield Culture of Induced Neurons from Human Adult Skin Fibroblasts. Journal of Visualized Experiments, 2018, , .	0.3	16
294	Outcome of cell suspension allografts in a patient with Huntington's disease. Annals of Neurology, 2018, 84, 950-956.	5.3	16
295	Platelet-derived extracellular vesicles in Huntington's disease. Journal of Neurology, 2018, 265, 2704-2712.	3.6	16
296	Transplanted Human Neural Precursor Cells Migrate Widely but Show no Lesion-Specific Tropism in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. Cell Transplantation, 2006, 15, 579-593.	2.5	15
297	Neural Transplantation in Huntington's Disease: The NEST-UK Donor Tissue Microbiological Screening Program and Review of the Literature. Cell Transplantation, 2006, 15, 279-294.	2.5	15
298	The Factor Structure of the UPDRS as an Index of Disease Progression in Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 75-82.	2.8	15
299	Dopaminergic manipulations and its effects on neurogenesis and motor function in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2014, 66, 19-27.	4.4	15
300	Modelling the natural history of Huntington's disease progression. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1143-1149.	1.9	15
301	Utility of the new Movement Disorder Society clinical diagnostic criteria for Parkinson's disease applied retrospectively in a large cohort study of recent onset cases. Parkinsonism and Related Disorders, 2017, 40, 40-46.	2.2	15
302	Association Between Tollâ€Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Genetic Variants and Clinical Progression of Huntington's Disease. Movement Disorders, 2020, 35, 401-408.	3.9	15
303	A Case of Unilateral Neglect in Huntington's Disease. Neurocase, 2003, 9, 261-273.	0.6	14
304	Established and Emerging Therapies for Huntingtons Disease. Current Molecular Medicine, 2007, 7, 579-587.	1.3	14
305	Stem cells and neurodegenerative diseases: where is it all going?. Regenerative Medicine, 2012, 7, 26-31.	1.7	14
306	Retrospective Assessment of Movement Disorder Society Criteria for Mild Cognitive Impairment in Parkinson's Disease. Journal of the International Neuropsychological Society, 2015, 21, 137-145.	1.8	14

#	Article	IF	CITATIONS
307	Making it personal: the prospects for autologous pluripotent stem cell-derived therapies. Regenerative Medicine, 2016, 11, 423-425.	1.7	14
308	L-dopa responsiveness in early Parkinson's disease is associated with the rate of motor progression. Parkinsonism and Related Disorders, 2019, 65, 55-61.	2.2	14
309	Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue. Xenotransplantation, 2004, 11, 60-71.	2.8	13
310	Migration of cells from primary transplants of allo―and xenografted foetal striatal tissue in the adult rat brain. European Journal of Neuroscience, 2005, 21, 1503-1510.	2.6	13
311	Regenerative Therapies for Parkinson's Disease: An Update. BioDrugs, 2018, 32, 357-366.	4.6	13
312	DJ-1 can form Î ² -sheet structured aggregates that co-localize with pathological amyloid deposits. Neurobiology of Disease, 2020, 134, 104629.	4.4	13
313	Validation of a UPDRS-/MDS-UPDRS-based definition of functional dependency for Parkinson's disease. Parkinsonism and Related Disorders, 2020, 76, 49-53.	2.2	13
314	Hydrocephalus Complicating Intrathecal Antisense Oligonucleotide Therapy for Huntington's Disease. Movement Disorders, 2021, 36, 263-264.	3.9	13
315	MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Development (Cambridge), 2021, 148, .	2.5	13
316	Prospects for the treatment of Parkinson's disease using neural grafts. Expert Opinion on Pharmacotherapy, 2000, 1, 889-902.	1.8	12
317	Pseudo-neglect in Huntington's disease correlates with decreased angular gyrus density. NeuroReport, 2004, 15, 1061-1064.	1.2	12
318	Mild cognitive impairment in Parkinson's disease: millstone or milestone?. Practical Neurology, 2013, 13, 68-69.	1.1	12
319	Stem cell therapies for Parkinson's disease: are trials just around the corner?. Regenerative Medicine, 2014, 9, 553-555.	1.7	12
320	Neurotrophic factors and neural grafts: a growing field. Seminars in Neuroscience, 1993, 5, 431-441.	2.2	11
321	Increased capacity for axonal outgrowth using xenogenic tissue in vitro and in a rodent model of Parkinson's disease. Xenotransplantation, 2006, 13, 233-247.	2.8	11
322	The motor and cognitive features of Parkinson's disease in patients with concurrent Gaucher disease over 2 years: a case series. Journal of Neurology, 2018, 265, 1789-1794.	3.6	11
323	Which Neuropsychological Tests? Predicting Cognitive Decline and Dementia in Parkinson's Disease in the ICICLE-PD Cohort. Journal of Parkinson's Disease, 2021, 11, 1297-1308.	2.8	11
324	A new approach to disease-modifying drug trials in Parkinson's disease. Journal of Clinical Investigation, 2013, 123, 2364-2365.	8.2	11

#	Article	IF	CITATIONS
325	Level I <scp>PDâ€MCI</scp> Using Global Cognitive Tests and the Risk for Parkinson's Disease Dementia. Movement Disorders Clinical Practice, 2022, 9, 479-483.	1.5	11
326	αGal is widely expressed in embryonic porcine stem cells and neural tissue. NeuroReport, 2002, 13, 481-485.	1.2	10
327	How often does music and rhythm improve patients' perception of motor symptoms in Parkinson's disease?. Journal of Neurology, 2013, 260, 1404-1405.	3.6	10
328	Antidopaminergic Medication is Associated with More Rapidly Progressive Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 131-140.	1.9	10
329	Categorising Visual Hallucinations in Early Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 447-453.	2.8	10
330	Adult neurogenesis is unaffected by a functional knock-out of MHC class I in mice. NeuroReport, 2010, 21, 349-353.	1.2	9
331	Dopamine stimulates epidermal growth factor release from adult neural precursor cells derived from the subventricular zone by a disintegrin and metalloprotease. NeuroReport, 2011, 22, 956-958.	1.2	9
332	New hands at the helm. Journal of Neurology, 2012, 259, 1-3.	3.6	9
333	Revisiting the effects of Parkinson's disease and frontal lobe lesions on task switching: The role of rule reconfiguration. Journal of Neuropsychology, 2014, 8, 53-74.	1.4	9
334	Defining PD subtypes — a step toward personalized management?. Nature Reviews Neurology, 2017, 13, 454-455.	10.1	9
335	Cortical and Striatal Reward Processing in Parkinson's Disease Psychosis. Frontiers in Neurology, 2017, 8, 156.	2.4	9
336	Rating Apathy in Huntington's Disease: Patients and Companions Agree. Journal of Huntington's Disease, 2015, 4, 49-59.	1.9	9
337	Combining biomarkers for prognostic modelling of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 707-715.	1.9	9
338	Progress in Huntington's disease: the search for markers of disease onset and progression. Journal of Neurology, 2015, 262, 1990-1995.	3.6	8
339	A novel combinational approach of microstimulation and bioluminescence imaging to study the mechanisms of action of cerebral electrical stimulation in mice. Journal of Physiology, 2015, 593, 2257-2278.	2.9	8
340	Formation of hippocampal mHTT aggregates leads to impaired spatial memory, hippocampal activation and adult neurogenesis. Neurobiology of Disease, 2017, 102, 105-112.	4.4	8
341	Altered subcortical emotional salience processing differentiates Parkinson's patients with and without psychotic symptoms. NeuroImage: Clinical, 2020, 27, 102277.	2.7	8
342	Neural transplantation therapies for Parkinson's and Huntington's diseases. Drug Discovery Today, 2001, 6, 575-582.	6.4	7

#	Article	IF	CITATIONS
343	A genome wide linkage disequilibrium screen in Parkinson's disease. Journal of Neurology, 2005, 252, 597-602.	3.6	7
344	No evidence for association between an MAOA functional polymorphism and susceptibility to Parkinson's disease. Journal of Neurology, 2009, 256, 132-133.	3.6	7
345	The Relationship between Abnormalities of Saccadic and Manual Response Times in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 557-563.	2.8	7
346	Novel targets for Huntington's disease: future prospects. Degenerative Neurological and Neuromuscular Disease, 2016, 6, 25.	1.3	7
347	Exogenous melatonin for Parkinson's disease: â€~Waking up' to the need for further trials. Parkinsonism and Related Disorders, 2016, 29, 121-122.	2.2	7
348	A simple assessment model to quantifying the dynamic hippocampal neurogenic process in the adult mammalian brain. Hippocampus, 2016, 26, 517-529.	1.9	7
349	Spatial structure normalises working memory performance in Parkinson's disease. Cortex, 2017, 96, 73-82.	2.4	7
350	Reprogramming Human Adult Fibroblasts into GABAergic Interneurons. Cells, 2021, 10, 3450.	4.1	7
351	Stem cell transplantation as an approach to brain repair. Expert Opinion on Therapeutic Patents, 2001, 11, 1563-1582.	5.0	6
352	What is the most promising treatment for Parkinson's disease: genes, cells, growth factors or none of the above?. Regenerative Medicine, 2012, 7, 617-621.	1.7	6
353	Putative cortical dopamine levels affect cortical recruitment during planning. Neuropsychologia, 2013, 51, 2194-2201.	1.6	6
354	Parkinson's disease: diagnosis and current management. The Prescriber, 2015, 26, 16-23.	0.3	6
355	Movement disorders and psychiatry. Neurology: Clinical Practice, 2015, 5, 143-149.	1.6	6
356	CD24 expression does not affect dopamine neuronal survival in a mouse model of Parkinson's disease. PLoS ONE, 2017, 12, e0171748.	2.5	6
357	Meaningful and Measurable Health Domains in Huntington's Disease: Large-Scale Validation of the Huntington's Disease Health-Related Quality of Life Questionnaire Across Severity Stages. Value in Health, 2019, 22, 712-720.	0.3	6
358	Assessment of the Performance of a Modified Motor Scale as Applied to Juvenile Onset Huntington's Disease. Journal of Huntington's Disease, 2019, 8, 181-193.	1.9	6
359	The Clinical Features and Progression of Late-Onset Versus Younger-Onset in an Adult Cohort of Huntington's Disease Patients. Journal of Huntington's Disease, 2020, 9, 275-282.	1.9	6
360	Parkinson's disease and spirituality. NeuroRehabilitation, 2020, 46, 31-39.	1.3	6

#	Article	IF	CITATIONS
361	Random number generation in patients with symptomatic and presymptomatic Huntington's disease. Cognitive and Behavioral Neurology, 2004, 17, 208-12.	0.9	6
362	The neurological assessment of patients in vegetative and minimally conscious states. Neuropsychological Rehabilitation, 2005, 15, 214-223.	1.6	5
363	Multimorbidity Predicts Quality of Life but not Motor Severity in Early Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 511-515.	2.8	5
364	Late-onset Huntington's disease associated with CAG repeat lengths of 30 and 31. Journal of Neurology, 2021, 268, 3916-3919.	3.6	5
365	THE REJECTION OF NEURAL XENOTRANSPLANTS: A ROLE FOR ANTIBODIES?. Transplantation, 1999, 68, 1091-1092.	1.0	5
366	Metastatic non-seminomatous germ cell tumour and dermatomyositis Postgraduate Medical Journal, 1990, 66, 59-60.	1.8	4
367	Cell therapies for neurological disease – from bench to clinic to bench. Expert Opinion on Biological Therapy, 2005, 5, 289-291.	3.1	4
368	Graft outcomes influenced by coâ€expression of Pax7 in graft and host tissue. Journal of Anatomy, 2009, 214, 396-405.	1.5	4
369	Current Understanding of the Glial Response to Disorders of the Aging CNS. Frontiers in Pharmacology, 2012, 3, 95.	3.5	4
370	The Central Clock in Patients With Parkinson Disease—Reply. JAMA Neurology, 2014, 71, 1456.	9.0	4
371	The future challenges in Parkinson?s Disease. Journal of Neurology, 2004, 251, 361-365.	3.6	3
372	Cell-based therapies for disorders of the CNS. Expert Opinion on Therapeutic Patents, 2005, 15, 1361-1376.	5.0	3
373	"The eyes have it― Saccadometry and Parkinson's disease. Experimental Neurology, 2009, 219, 382-384.	4.1	3
374	Parkinson's disease and 2009: recent advances. Journal of Neurology, 2010, 257, 1224-1228.	3.6	3
375	Stem cells and regenerative therapies for Parkinson's disease. Degenerative Neurological and Neuromuscular Disease, 2012, 2, 79.	1.3	3
376	Journal of Neurology: ready for continued success. Journal of Neurology, 2013, 260, 1-2.	3.6	3
377	The challenges of administering cell-based therapies to patients with Parkinson's disease. NeuroReport, 2013, 24, 1000-1004.	1.2	3
378	Disease-Modification in Huntington's Disease: Moving Away from a Single-Target Approach. Journal of Huntington's Disease, 2019, 8, 9-22.	1.9	3

ROGER A. BARKER

#	Article	IF	CITATIONS
379	Forecasts for the Attainment of Major Research Milestones in Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 1047-1055.	2.8	3
380	Comparison of Patient and Expert Perceptions of the Attainment of Research Milestones in Parkinson's Disease. Movement Disorders, 2021, 36, 171-177.	3.9	3
381	Bringing Advanced Therapy Medicinal Products (ATMPs) for Parkinson's Disease to the Clinic: The Investigator's Perspective. Journal of Parkinson's Disease, 2021, 11, S129-S134.	2.8	3
382	The need for a standard for informed consent for collection of human fetal material. Stem Cell Reports, 2022, 17, 1245-1247.	4.8	3
383	The future of stem cells in neurodegenerative disorders of the central nervous system. Cmaj, 2012, 184, 631-632.	2.0	2
384	L-dopa responsive parkinsonism secondary to a subdural haematoma. Journal of Clinical Neuroscience, 2013, 20, 1022-1024.	1.5	2
385	Mapping the natural history of Huntington disease. Nature Reviews Neurology, 2014, 10, 12-13.	10.1	2
386	Neurodegenerative disorders: the Glia way forward. Frontiers in Pharmacology, 2014, 5, 157.	3.5	2
387	GFORCE-PD still going strong in 2016. Npj Parkinson's Disease, 2017, 3, .	5.3	2
388	Longitudinal changes in movement-related functional MRI activity in Parkinson's disease patients. Parkinsonism and Related Disorders, 2021, 87, 61-69.	2.2	2
389	The Utility of Breath Analysis in the Diagnosis and Staging of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 993-1002.	2.8	2
390	Neural transplants for parkinson's disease: what are the issues?. Poiesis & Praxis, 2006, 4, 129-143.	0.3	1
391	Visual hallucinations predict increased benefits from rivastigmine in Parkinson's disease dementia. Nature Clinical Practice Neurology, 2007, 3, 250-251.	2.5	1
392	F11â€Verbal memory in huntington's disease: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A52.2-A52.	1.9	1
393	Parkinson's disease as a preventable pandemic. Lancet Neurology, The, 2020, 19, 813.	10.2	1
394	Transvascular delivery of α-synuclein preformed fibrils, using the RVG9R delivery system, generates α-synuclein pathology in the duodenal myenteric plexus of non-transgenic rats. Molecular Psychiatry, 2021, 26, 365-365.	7.9	1
395	Getting to the heart of dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 71, 574-575.	1.9	1
396	Neural Transplantation for the Treatment of Huntington's Disease. European Neurological Review, 2010, 5, 41.	0.5	1

#	Article	IF	CITATIONS
397	Metacognitive insight into cognitive performance in Huntington's disease gene carriers. BMJ Neurology Open, 2022, 4, e000268.	1.6	1
398	An unusual cause for a painful diplopia Postgraduate Medical Journal, 1998, 74, 177-178.	1.8	0
399	Tracking disease progress in Huntington disease. Nature Reviews Neurology, 2011, 7, 192-193.	10.1	0
400	Can patient-specific transdifferentiated neuronal cells help us understand the cellular pathology of Parkinson's disease?. Future Neurology, 2013, 8, 605-607.	0.5	0
401	The neurology community mourns the passing of Dr. John F. Kurtzke. Journal of Neurology, 2016, 263, 421-421.	3.6	0
402	PO088â€Nigral iron susceptibility in parkinson's disease: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A34.4-A35.	1.9	0
403	Microfluidic Neural Devices: 3Dâ€Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices (Adv. Sci. 16/2020). Advanced Science, 2020, 7, 2070088.	11.2	0
404	Informed Consent for Stem Cell–Based Interventions—Reply. JAMA - Journal of the American Medical Association, 2020, 323, 894.	7.4	0
405	The Origins of the Protein Spread in Parkinson's Disease. Movement Disorders Clinical Practice, 2021, 8, 1194-1197.	1.5	0