
Donald D Heistad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genes That Escape X Chromosome Inactivation Modulate Sex Differences in Valve Myofibroblasts. Circulation, 2022, 145, 513-530.	1.6	28
2	Stages in Discovery. Hypertension, 2015, 66, 15-16.	2.7	8
3	Novel Role for Endogenous Hepatocyte Growth Factor in the Pathogenesis of Intracranial Aneurysms. Hypertension, 2015, 65, 587-593.	2.7	22
4	Spontaneous Aortic Regurgitation and Valvular Cardiomyopathy in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1653-1662.	2.4	13
5	Angiotensin 1–7 Reduces Mortality and Rupture of Intracranial Aneurysms in Mice. Hypertension, 2014, 64, 362-368.	2.7	38
6	mPGESâ€1 deficiency increases mortality and aneurysm rupture in a mouse model of intracranial aneurysms. FASEB Journal, 2013, 27, lb503.	0.5	0
7	ACE2 Deficiency Augments Cerebrovascular Dysfunction during Aging. FASEB Journal, 2012, 26, lb651.	0.5	0
8	Calcific Aortic Valve Stenosis: Methods, Models, and Mechanisms. Circulation Research, 2011, 108, 1392-1412.	4.5	257
9	Remodelling of small cerebral arteries in human hypertension: structural and functional alterations. Journal of Hypertension, 2009, 27, 709-711.	0.5	2
10	Endothelial Function in the Time of the Giants. Journal of Cardiovascular Pharmacology, 2008, 52, 385-392.	1.9	13
11	Gene transfer after subarachnoid hemorrhage: a tool and potential therapy. Acta Neurochirurgica Supplementum, 2008, 104, 157-159.	1.0	0
12	MnSOD deficiency increases endothelial dysfunction produced by intermittent hypoxia. FASEB Journal, 2008, 22, .	0.5	0
13	Serotonin produces MAO dependent oxidative stress in human heart valves. FASEB Journal, 2008, 22, 747.6.	0.5	1
14	MnSOD protects against COX1â€mediated endothelial dysfunction in chronic heart failure. FASEB Journal, 2008, 22, 1237.1.	0.5	0
15	Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3726-H3731.	3.2	75
16	Gene therapy for stroke: 2006 overview. Current Hypertension Reports, 2007, 9, 19-24.	3.5	15
17	Oxidative stress after intracranial hemorrhage. FASEB Journal, 2007, 21, A396.	0.5	0
18	Gene therapy for vascular disease. Vascular Pharmacology, 2006, 45, 331-333.	2.1	10

2

#	Article	IF	CITATIONS
19	Effects of chronic intermittent hypoxia on endothelial function in mice. FASEB Journal, 2006, 20, A1165.	0.5	0
20	Targeting cerebral arteries for gene therapy. Experimental Physiology, 2005, 90, 327-331.	2.0	3
21	Gene Therapy and Cardiovascular Diseases. , 2005, , 57-69.		Ο
22	Vasomotor responses in MnSOD-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1141-H1148.	3.2	28
23	Vascular Biology and Atherosclerosis of Cerebral Arteries. , 2004, , 763-774.		1
24	Gene therapy for cerebral vascular disease: update 2003. British Journal of Pharmacology, 2003, 139, 1-9.	5.4	16
25	Mikamo Lecture-A Radical View of the 'Superfamily' of Cardiovascular Risk Factors Circulation Journal, 2003, 67, 805-809.	1.6	9
26	Posttreatment with adenovirus-mediated gene transfer of calcitonin gene—related peptide to reverse cerebral vasospasm in dogs. Journal of Neurosurgery, 2002, 97, 136-142.	1.6	33
27	[15] Gene transfer to blood vessels using adenoviral vectors. Methods in Enzymology, 2002, 346, 263-276.	1.0	14
28	Gene transfer to blood vessels: a research tool and potential therapy. American Journal of Hypertension, 2001, 14, S28-S32.	2.0	8
29	The future of gene therapy for stroke. Current Hypertension Reports, 2001, 3, 36-40.	3.5	10
30	Age-related neuronal vulnerability to brain ischemia: A potential target of gene therapy. Age, 2001, 24, 31-35.	3.0	2
31	What's New in the Cerebral Microcirculation?. Microcirculation, 2001, 8, 366-375.	1.8	33
32	Cationic Polymer and Lipids Augment Adenovirus-Mediated Gene Transfer to Cerebral Arteries In vivo. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1125-1131.	4.3	24
33	NO-Dependent Vasorelaxation Is Impaired After Gene Transfer of Inducible NO-Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1281-1287.	2.4	56
34	Adenovirus-Mediated Gene Transfer to Cerebral Blood Vessels and Ischemic Brain: Perivascular Approach and Ischemic Threshold. , 2001, , 136-141.		0
35	Adenovirus-mediated gene transfer to cerebral circulation. Mechanisms of Ageing and Development, 2000, 116, 95-101.	4.6	9
36	Gene therapy of hypertensive vascular injury. Current Hypertension Reports, 2000, 2, 92-97.	3.5	3

#	Article	IF	CITATIONS
37	Gene transfer of calcitonin gene-related peptide to cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H586-H594.	3.2	41
38	Potassium channels modulate cerebral autoregulation during acute hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H2003-H2007.	3.2	30
39	Tumor necrosis factor-α impairs contraction but not relaxation in carotid arteries from iNOS-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1558-R1564.	1.8	7
40	Gene Transfer of Calcitonin Gene–Related Peptide Prevents Vasoconstriction After Subarachnoid Hemorrhage. Circulation Research, 2000, 87, 818-824.	4.5	73
41	Gene Transfer of Endothelial Nitric Oxide Synthase Reduces Angiotensin II–Induced Endothelial Dysfunction. Hypertension, 2000, 35, 595-601.	2.7	71
42	Gene transfer of endothelial nitric oxide synthase (eNOS) in eNOS-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H770-H776.	3.2	25
43	Approaches to Enhance Expression After Adenovirus-Mediated Gene Transfer to the Carotid Artery. Endothelium: Journal of Endothelial Cell Research, 1999, 7, 75-82.	1.7	8
44	Ten steps to gene therapy for cardiovascular diseases. Translational Research, 1998, 132, 104-111.	2.3	5
45	Superoxide Production in Vascular Smooth Muscle Contributes to Oxidative Stress and Impaired Relaxation in Atherosclerosis. Circulation Research, 1998, 82, 1298-1305.	4.5	597
46	Improvement of Relaxation in an Atherosclerotic Artery by Gene Transfer of Endothelial Nitric Oxide Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1752-1758.	2.4	76
47	Vascular effects of LPS in mice deficient in expression of the gene for inducible nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H416-H421.	3.2	53
48	Regulation of the Cerebral Circulation: Role of Endothelium and Potassium Channels. Physiological Reviews, 1998, 78, 53-97.	28.8	699
49	Novel methods for adenovirus-mediated gene transfer to blood vessels in vivo. , 1997, , 37-46.		1
50	Mechanisms of Bradykinin-Induced Cerebral Vasodilatation in Rats. Stroke, 1997, 28, 2290-2295.	2.0	144
51	Biology of Cerebral Vascular Muscle. , 1997, , 13-16.		1
52	Structure and function of vasa vasorum. Trends in Cardiovascular Medicine, 1996, 6, 53-57.	4.9	55
53	RECENT INSIGHTS INTO THE REGULATION OF CEREBRAL CIRCULATION. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 449-457.	1.9	129
54	l -Arginine Restores Dilator Responses of the Basilar Artery to Acetylcholine During Chronic Hypertension. Hypertension, 1996, 27, 893-896.	2.7	30

#	Article	IF	CITATIONS
55	Effect of Short-term Regression of Atherosclerosis on Reactivity of Carotid and Retinal Arteries. Stroke, 1996, 27, 927-933.	2.0	15
56	Role of Ca 2+ -Dependent K + Channels in Cerebral Vasodilatation Induced by Increases in Cyclic GMP and Cyclic AMP in the Rat. Stroke, 1996, 27, 1603-1608.	2.0	94
57	Gene Therapy for Cerebral Vascular Disease. Stroke, 1996, 27, 1688-1693.	2.0	84
58	Effects of Adenosine and 2-Chloroadenosine on Cerebral Collateral Vessels. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 1075-1081.	4.3	12
59	Relaxation of the Carotid Artery to Hypoxia Is Impaired in Watanabe Heritable Hyperlipidemic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1641-1645.	2.4	20
60	Adenovirus-Mediated Gene Transfer to Normal and Atherosclerotic Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 2241-2245.	2.4	66
61	Evidence That Angiotensin II Is Present in Human Monocytes. Circulation, 1995, 91, 1129-1134.	1.6	68
62	Enhanced Responses of the Basilar Artery to Activation of Endothelin-B Receptors in Stroke-Prone Spontaneously Hypertensive Rats. Hypertension, 1995, 25, 490-494.	2.7	40
63	Sick Vessel Syndrome. Hypertension, 1995, 26, 509-513.	2.7	31
64	Dilatation of Cerebral Arterioles in Response to Activation of Adenylate Cyclase Is Dependent on Activation of Ca ²⁺ -Dependent K ⁺ Channels. Circulation Research, 1995, 76, 1057-1062.	4.5	65
65	Adenovirus-Mediated Gene Transfer In Vivo to Cerebral Blood Vessels and Perivascular Tissue. Circulation Research, 1995, 77, 7-13.	4.5	106
66	Evidence That Expression of Inducible Nitric Oxide Synthase in Response to Endotoxin Is Augmented in Atherosclerotic Rabbits. Circulation Research, 1995, 77, 536-543.	4.5	26
67	Dilatation of Cerebral Arterioles in Response to Lipopolysaccharide In Vivo. Stroke, 1995, 26, 277-281.	2.0	25
68	Role of Potassium Channels in Cerebral Blood Vessels. Stroke, 1995, 26, 1713-1723.	2.0	150
69	Functional improvement precedes structural regression of atherosclerosis Circulation, 1994, 89, 1810-1818.	1.6	359
70	Spontaneous and 5HT Induced Contractions. Cephalalgia, 1994, 14, 391-391.	3.9	0
71	Augmentation of Blood Flow through Cerebral Collaterals by Inhibition of Nitric Oxide Synthase. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 704-714.	4.3	18
72	Role of Platelets and Leukocytes in Modulation of Vascular Tone ^a . Annals of the New York Academy of Sciences, 1994, 714, 122-135.	3.8	17

#	Article	IF	CITATIONS
73	Responses of cerebral arterioles to N-methyl-d-aspartate and activation of ATP-sensitive potassium channels in old rats. Brain Research, 1994, 654, 349-351.	2.2	11
74	Altered vascular responses to platelets from hypercholesterolemic humans Circulation Research, 1993, 72, 737-743.	4.5	31
75	Platelet-Endothelium Interactions. New England Journal of Medicine, 1993, 328, 628-635.	27.0	244
76	Effects of Hypertension on Cerebral Blood Bessels Hypertension Research, 1993, 16, 225-231.	2.7	6
77	Asymmetry of vascular responses of perfused rabbit carotid artery to intraluminal and abluminal vasoactive stimuli Journal of Physiology, 1992, 458, 223-234.	2.9	9
78	Adaptive changes in cerebral blood vessels during chronic hypertension reply. Journal of Hypertension, 1992, 10, 400.	0.5	0
79	Activation of leukocytes with complement C5a is associated with prostanoid-dependent constriction of large arteries in atherosclerotic monkeys in vivo. Atherosclerosis, 1992, 95, 211-222.	0.8	8
80	Endothelium-Derived Relaxing Factor Inhibits Constrictor Responses of Large Cerebral Arteries to Serotonin. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 500-506.	4.3	36
81	Effect of Atriopeptin on Production of Cerebrospinal Fluid. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 691-696.	4.3	18
82	Regression of Atherosclerosis. American Journal of Hypertension, 1991, 4, 503S-511S.	2.0	6
83	Adaptive changes in cerebral blood vessels during chronic hypertension. Journal of Hypertension, 1991, 9, 987-991.	0.5	52
84	Cerebral Endothelial Function: Physiology and Pathophysiology. , 1991, , 167-173.		0
85	Constriction and Dilatation in Atherosclerotic and Hypertensive Arteries. , 1991, , 251-260.		0
86	Impaired Dilatation of Cerebral Arterioles in Chronic Hypertension. Journal of Vascular Research, 1990, 27, 258-262.	1.4	34
87	Atherosclerosis Alters Vascular Responses To Activated Platelets and Leukocytes. , 1990, , 155-161.		0
88	Animal models of atherosclerosis. Atherosclerosis, 1990, 85, 15-23.	0.8	85
89	Effects of endothelin on blood vessels of the brain and choroid plexus. Brain Research, 1990, 518, 78-82.	2.2	60
90	Atherosclerosis Alters the Response to Activated Platelets and Leukocytes. Advances in Experimental Medicine and Biology, 1990, 273, 173-180.	1.6	1

#	Article	IF	CITATIONS
91	Hypothesis: Vasoconstriction Contributes to Amaurosis Fugax. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 111-116.	4.3	42
92	Vasa vasorum in the carotid sinus of atherosclerotic monkeys: implications for baroreceptor function. Atherosclerosis, 1989, 78, 25-32.	0.8	13
93	Effect of serotonin on blood flow to the choroid plexus. Brain Research, 1989, 478, 121-126.	2.2	32
94	Effects of vasodilatation and acidosis on the blood-brain barrier. Microvascular Research, 1988, 35, 179-192.	2.5	27
95	Diffusional support of the thoracic aorta in atherosclerotic monkeys. Atherosclerosis, 1987, 68, 123-130.	0.8	13
96	Serotonin and experimental vascular disease. International Journal of Cardiology, 1987, 14, 205-212.	1.7	8
97	Effects of chronic hypertension on vasa vasorum in the thoracic aorta. Cardiovascular Research, 1985, 19, 777-781.	3.8	45
98	Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation. Annals of Biomedical Engineering, 1985, 13, 303-310.	2.5	108
99	Vasoactive drugs produce selective changes in flow to experimental brain tumors. Annals of Neurology, 1985, 18, 712-715.	5.3	20
100	Comparison of three methods of evaluating coronary obstructive lesions: Postmortem arteriography, pathologic examination and measurement of regional myocardial perfusion during maximal vasodilation. American Journal of Cardiology, 1982, 49, 1699-1706.	1.6	69
101	Regulation of Blood Flow to the Aortic Media in Dogs. Journal of Clinical Investigation, 1978, 62, 133-140.	8.2	90