Kazuya Yoshimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841326/publications.pdf Version: 2024-02-01

KAZUVA YOSHIMUDA

#	Article	IF	CITATIONS
1	Chloroplast development activates the expression of ascorbate biosynthesis-associated genes in Arabidopsis roots. Plant Science, 2019, 284, 185-191.	3.6	16
2	Biochemistry and Physiology of Vitamins in Euglena. Advances in Experimental Medicine and Biology, 2017, 979, 65-90.	1.6	9
3	Modulation of NADH Levels by Arabidopsis Nudix Hydrolases, AtNUDX6 and 7, and the Respective Proteins Themselves Play Distinct Roles in the Regulation of Various Cellular Responses Involved in Biotic/Abiotic Stresses. Plant and Cell Physiology, 2016, 57, 1295-1308.	3.1	20
4	Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. Scientific Reports, 2016, 6, 37432.	3.3	13
5	Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene. Journal of Plant Physiology, 2016, 192, 81-89.	3.5	38
6	ldentification and characterization of <i>Arabidopsis</i> AtNUDX9 as a GDP-d-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium. Journal of Experimental Botany, 2015, 66, 5797-5808.	4.8	17
7	Versatile physiological functions of the Nudix hydrolase family in Arabidopsis. Bioscience, Biotechnology and Biochemistry, 2015, 79, 354-366.	1.3	45
8	Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals: The partial involvement of GENOMES UNCOUPLED 1. Plant Science, 2015, 231, 20-29.	3.6	13
9	Transient expression analysis revealed the importance of <i>VTC2</i> expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Bioscience, Biotechnology and Biochemistry, 2014, 78, 60-66.	1.3	51
10	Ectopic Expression of the Human MutT-Type Nudix Hydrolase, hMTH1, Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1534-1543.	3.1	9
11	Identification of Alternative Splicing Events Regulated by an Arabidopsis Serine/Arginine-Like Protein, atSR45a, in Response to High-Light Stress using a Tiling Array. Plant and Cell Physiology, 2011, 52, 1786-1805.	3.1	29
12	Wild plant resources for studying molecular mechanisms of drought/strong light stress tolerance. Plant Biotechnology, 2008, 25, 257-263.	1.0	44
13	Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. Journal of Experimental Botany, 2007, 58, 2661-2671.	4.8	220
14	Differential Expression of Alternatively Spliced mRNAs of Arabidopsis SR Protein Homologs, atSR30 and atSR45a, in Response to Environmental Stress. Plant and Cell Physiology, 2007, 48, 1826-1826.	3.1	2
15	AtNUDX1, an 8-Oxo-7,8-Dihydro-2'-Deoxyguanosine 5'-Triphosphate Pyrophosphohydrolase, is Responsible for Eliminating Oxidized Nucleotides in Arabidopsis. Plant and Cell Physiology, 2007, 48, 1438-1449.	3.1	53