Shenghui He

List of Publications by Citations

Source: https://exaly.com/author-pdf/1841275/shenghui-he-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16 15 3,342 12 h-index g-index citations papers 16 3,896 21.4 5.59 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
15	Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. <i>Nature</i> , 2006 , 443, 448-52	50.4	793
14	Senescence in Health and Disease. <i>Cell</i> , 2017 , 169, 1000-1011	56.2	618
13	Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. <i>Genes and Development</i> , 2005 , 19, 1432-7	12.6	480
12	Mechanisms of stem cell self-renewal. Annual Review of Cell and Developmental Biology, 2009, 25, 377-	- 40<u>6</u>. 6	418
11	Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. <i>Nature</i> , 2007 , 449, 238-42	50.4	328
10	Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. <i>Journal of Clinical Investigation</i> , 2011 , 121, 3398-411	15.9	168
9	Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. <i>Blood</i> , 2006 , 108, 737-44	2.2	161
8	Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2005 , 70, 177-85	3.9	104
7	Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. <i>Genes and Development</i> , 2011 , 25, 1613-27	12.6	90
6	Transient CDK4/6 inhibition protects hematopoietic stem cells from chemotherapy-induced exhaustion. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	73
5	Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. <i>Developmental Biology</i> , 2009 , 328, 257-72	3.1	68
4	BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. <i>Nature Genetics</i> , 2020 , 52, 1384-1396	36.3	25
3	The first human trial of CRISPR-based cell therapy clears safety concerns as new treatment for late-stage lung cancer. Signal Transduction and Targeted Therapy, 2020, 5, 168	21	7
2	ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. <i>Nature Communications</i> , 2021 , 12, 1045	17.4	6
1	The Impact of Aging on Cancer Progression and Treatment 2016 , 53-83		2