Narsimha Mamidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering and Evaluation of Forcespun Gelatin Nanofibers as an Isorhamnetin Glycosides Delivery System. Pharmaceutics, 2022, 14, 1116.	4.5	7
2	Engineering of carbon nano-onion bioconjugates for biomedical applications. Materials Science and Engineering C, 2021, 120, 111698.	7.3	48
3	Covalently Functionalized Carbon Nano-Onions Integrated Gelatin Methacryloyl Nanocomposite Hydrogel Containing γ-Cyclodextrin as Drug Carrier for High-Performance pH-Triggered Drug Release. Pharmaceuticals, 2021, 14, 291.	3.8	55
4	Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104554.	3.1	37
5	Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111819.	5.0	76
6	Unconventional and facile production of a stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation. Environmental Science: Nano, 2021, 8, 2081-2097.	4.3	24
7	Polymer Brush-Based Thin Films via Cu(0)-Mediated Surface-Initiated Atom Transfer Radical Polymerization for Sensing Applications. ACS Applied Polymer Materials, 2021, 3, 5339-5354.	4.4	7
8	Polyhydroxybutyrate-Based Nanocomposites for Bone Tissue Engineering. Pharmaceuticals, 2021, 14, 1163.	3.8	32
9	Carbon Nano-Onions Reinforced Multilayered Thin Film System for Stimuli-Responsive Drug Release. Pharmaceutics, 2020, 12, 1208.	4.5	31
10	Engineering of functionalized carbon nano-onions reinforced nanocomposites: Fabrication, biocompatibility, and mechanical properties. Journal of Materials Research, 2020, 35, 922-930.	2.6	14
11	Rational design and engineering of carbon nano-onions reinforced natural protein nanocomposite hydrogels for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103696.	3.1	43
12	Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Materials Science and Engineering C, 2020, 112, 110928.	7.3	73
13	Development of ultra-high molecular weight polyethylene-functionalized carbon nano-onions composites for biomedical applications. Diamond and Related Materials, 2019, 97, 107435.	3.9	33
14	Development of Functionalized Carbon Nano-Onions Reinforced Zein Protein Hydrogel Interfaces for Controlled Drug Release. Pharmaceutics, 2019, 11, 621.	4.5	50
15	High throughput fabrication of curcumin embedded gelatin-polylactic acid forcespun fiber-aligned scaffolds for the controlled release of curcumin. MRS Communications, 2018, 8, 1395-1403.	1.8	26
16	Development of forcespun fiber-aligned scaffolds from gelatin-zein composites for potential use in tissue engineering and drug release. MRS Communications, 2018, 8, 885-892.	1.8	28
17	Study of lubrication and wear in single point incremental sheet forming (SPIF) process using vegetable oil nanolubricants. Wear, 2017, 376-377, 777-785.	3.1	42
18	Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release. MRS Communications, 2017, 7, 913-921.	1.8	26

Narsimha Mamidi

#	Article	IF	CITATIONS
19	<scp>C</scp> ytotoxicity evaluation of unfunctionalized multiwall carbon nanotubesâ€ultrahigh molecular weight polyethylene nanocomposites. Journal of Biomedical Materials Research - Part A, 2017, 105, 3042-3049.	4.0	20
20	Design, development, EUVL applications and nano mechanical properties of a new HfO2 based hybrid non-chemically amplified resist. RSC Advances, 2016, 6, 67143-67149.	3.6	28
21	An organic–inorganic hybrid supramolecular framework material based on a [P ₂ W ₁₈ O ₆₂] ^{6â°'} cluster and Yb & Na complexes of pyridine-2,6-dicarboxylic acid: a catalyst for selective oxidation of sulfides in water with H ₂ O ₂ . CrystEngComm. 2016. 18. 4272-4276.	2.6	10
22	Aromatic Sulfonium Polyoxomolybdates: Solid‣tate Photochromic Materials with Tunable Properties. Chemistry - A European Journal, 2015, 21, 18557-18562.	3.3	25
23	Elucidating the interaction of γ-hydroxymethyl-γ-butyrolactone substituents with model membranes and protein kinase C–C1 domains. Molecular BioSystems, 2015, 11, 1389-1399.	2.9	1
24	Synthesis and protein kinase C (PKC)-C1 domain binding properties of diacyltetrol based anionic lipids. Molecular BioSystems, 2014, 10, 3002-3013.	2.9	5
25	Physicochemical characterization of diacyltetrol-based lipids consisting of both diacylglycerol and phospholipid headgroups. RSC Advances, 2014, 4, 21971-21978.	3.6	11
26	Zn(OTf) ₂ -Promoted Chemoselective Esterification of Hydroxyl Group Bearing Carboxylic Acids. Journal of Organic Chemistry, 2013, 78, 2386-2396.	3.2	33
27	Development of diacyltetrol lipids as activators for the C1 domain of protein kinase C. Molecular BioSystems, 2012, 8, 1275.	2.9	12
28	Effects of Ortho Substituent Groups of Protocatechualdehyde Derivatives on Binding to the C1 Domain of Novel Protein Kinase C. Journal of Physical Chemistry B, 2012, 116, 10684-10692.	2.6	14
29	Alkyl cinnamates as regulator for the C1 domain of protein kinase C isoforms. Chemistry and Physics of Lipids, 2012, 165, 320-330.	3.2	23
30	Cytotoxicity Evaluation of Carbon Nanotubes for Biomedical and Tissue Engineering Applications. , 0, ,		7