François-LoÃ⁻c Cosset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1–E2 Envelope Protein Complexes. Journal of Experimental Medicine, 2003, 197, 633-642.	4.2	1,008
2	Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7408-7413.	3.3	651
3	High-titer packaging cells producing recombinant retroviruses resistant to human serum. Journal of Virology, 1995, 69, 7430-7436.	1.5	650
4	EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Medicine, 2011, 17, 589-595.	15.2	631
5	An Envelope Glycoprotein of the Human Endogenous Retrovirus HERV-W Is Expressed in the Human Placenta and Fuses Cells Expressing the Type D Mammalian Retrovirus Receptor. Journal of Virology, 2000, 74, 3321-3329.	1.5	611
6	Cell Entry of Hepatitis C Virus Requires a Set of Co-receptors That Include the CD81 Tetraspanin and the SR-B1 Scavenger Receptor. Journal of Biological Chemistry, 2003, 278, 41624-41630.	1.6	525
7	Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6025-6030.	3.3	478
8	In vitro assay for neutralizing antibody to hepatitis C virus: Evidence for broadly conserved neutralization epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14199-14204.	3.3	297
9	Sensitization of cells and retroviruses to human serum by (αl-3) galactosyltransferase. Nature, 1996, 379, 85-88.	13.7	284
10	Viral vectors: from virology to transgene expression. British Journal of Pharmacology, 2009, 157, 153-165.	2.7	282
11	Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood, 2002, 100, 823-832.	0.6	280
12	A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cellular and Molecular Immunology, 2021, 18, 318-327.	4.8	270
13	Monoclonal Antibody AP33 Defines a Broadly Neutralizing Epitope on the Hepatitis C Virus E2 Envelope Glycoprotein. Journal of Virology, 2005, 79, 11095-11104.	1.5	262
14	An Interplay between Hypervariable Region 1 of the Hepatitis C Virus E2 Glycoprotein, the Scavenger Receptor Bl, and High-Density Lipoprotein Promotes both Enhancement of Infection and Protection against Neutralizing Antibodies. Journal of Virology, 2005, 79, 8217-8229.	1.5	261
15	Human Serum Facilitates Hepatitis C Virus Infection, and Neutralizing Responses Inversely Correlate with Viral Replication Kinetics at the Acute Phase of Hepatitis C Virus Infection. Journal of Virology, 2005, 79, 6023-6034.	1.5	246
16	Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology, 2005, 41, 265-274.	3.6	234
17	Towards an HBV cure: state-of-the-art and unresolved questions—report of the ANRS workshop on HBV cure. Gut, 2015, 64, 1314-1326.	6.1	234
18	Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4560-4565.	3.3	231

#	Article	IF	CITATIONS
19	Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Glycoproteins. Journal of Virology, 2005, 79, 8400-8409.	1.5	231
20	Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology, 2007, 46, 1722-1731.	3.6	222
21	The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. Journal of Biological Chemistry, 2021, 296, 100111.	1.6	211
22	Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Therapy, 2000, 7, 1613-1623.	2.3	204
23	Characterization of Functional Hepatitis C Virus Envelope Glycoproteins. Journal of Virology, 2004, 78, 2994-3002.	1.5	198
24	Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nature Communications, 2019, 10, 45.	5.8	195
25	High Density Lipoprotein Inhibits Hepatitis C Virus-neutralizing Antibodies by Stimulating Cell Entry via Activation of the Scavenger Receptor Bl. Journal of Biological Chemistry, 2006, 281, 18285-18295.	1.6	186
26	lmmunogenicity and efficacy of           heterologous ChAdOx1–BNT162b2 vaccina 701-706.	tion Natu 13.7	re, <u>202</u> 1, 600 180
27	The Tight Junction Proteins Claudin-1, -6, and -9 Are Entry Cofactors for Hepatitis C Virus. Journal of Virology, 2008, 82, 3555-3560.	1.5	178
28	Continuous high-titer HIV-1 vector production. Nature Biotechnology, 2003, 21, 569-572.	9.4	172
29	The Envelope Glycoprotein of Human Endogenous Retrovirus Type W Uses a Divergent Family of Amino Acid Transporters/Cell Surface Receptors. Journal of Virology, 2002, 76, 6442-6452.	1.5	171
30	Viral and Cellular Determinants of the Hepatitis C Virus Envelope-Heparan SulfateInteraction. Journal of Virology, 2006, 80, 10579-10590.	1.5	167
31	C-type Lectins L-SIGN and DC-SIGN Capture and Transmit Infectious Hepatitis C Virus Pseudotype Particles. Journal of Biological Chemistry, 2004, 279, 32035-32045.	1.6	166
32	Cell Cycle Features of Primate Embryonic Stem Cells. Stem Cells, 2006, 24, 547-556.	1.4	165
33	Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C Virus. Journal of Virology, 2007, 81, 8752-8765.	1.5	157
34	Virology and cell biology of the hepatitis C virus life cycle – An update. Journal of Hepatology, 2014, 61, S3-S13.	1.8	154
35	Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood, 2014, 123, 1422-1424.	0.6	145
36	Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-Claudin-1 associations. Hepatology, 2010, 51, 1144-1157.	3.6	144

#	Article	IF	CITATIONS
37	HRas Signal Transduction Promotes Hepatitis C Virus Cell Entry by Triggering Assembly of the Host Tetraspanin Receptor Complex. Cell Host and Microbe, 2013, 13, 302-313.	5.1	141
38	Neutralizing antibodies to hepatitis C virus (HCV) in immune globulins derived from anti-HCV-positive plasma. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7705-7710.	3.3	140
39	Production of Infectious Hepatitis C Virus in Primary Cultures of Human Adult Hepatocytes. Gastroenterology, 2010, 139, 1355-1364.e6.	0.6	139
40	The Tight Junction-Associated Protein Occludin Is Required for a Postbinding Step in Hepatitis C Virus Entry and Infection. Journal of Virology, 2009, 83, 8012-8020.	1.5	138
41	Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood, 2008, 112, 4843-4852.	0.6	135
42	Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. FASEB Journal, 2009, 23, 3780-3789.	0.2	135
43	Development of Minimal Lentivirus Vectors Derived from Simian Immunodeficiency Virus (SIVmac251) and Their Use for Gene Transfer into Human Dendritic Cells. Journal of Virology, 2000, 74, 8307-8315.	1.5	132
44	Cell entry of hepatitis C virus. Virology, 2006, 348, 1-12.	1.1	131
45	A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly. PLoS Pathogens, 2011, 7, e1002144.	2.1	130
46	Glut1-mediated glucose transport regulates HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2549-2554.	3.3	130
47	Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. Journal of Experimental Medicine, 2010, 207, 2019-2031.	4.2	125
48	A Prime-Boost Strategy Using Virus-Like Particles Pseudotyped for HCV Proteins Triggers Broadly Neutralizing Antibodies in Macaques. Science Translational Medicine, 2011, 3, 94ra71.	5.8	125
49	Hepatitis C Virus Glycoproteins Mediate Low pH-dependent Membrane Fusion with Liposomes. Journal of Biological Chemistry, 2006, 281, 3909-3917.	1.6	119
50	High Levels of Transduction of Human Dendritic Cells with Optimized SIV Vectors. Molecular Therapy, 2002, 5, 283-290.	3.7	115
51	Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. Journal of Virology, 1996, 70, 2957-2962.	1.5	112
52	Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood, 2014, 124, 1221-1231.	0.6	109
53	Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains. PLoS Pathogens, 2009, 5, e1000310.	2.1	107
54	Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol. PLoS ONE, 2011, 6, e15874.	1.1	106

#	Article	IF	CITATIONS
55	Characterization of Hepatitis C Virus Particle Subpopulations Reveals Multiple Usage of the Scavenger Receptor BI for Entry Steps. Journal of Biological Chemistry, 2012, 287, 31242-31257.	1.6	104
56	IL-7 surface-engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood, 2003, 101, 2167-2174.	0.6	103
57	Hepatitis C virus replication cycle. Journal of Hepatology, 2010, 53, 583-585.	1.8	101
58	Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nature Communications, 2019, 10, 2098.	5.8	101
59	TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nature Cell Biology, 2013, 15, 818-828.	4.6	99
60	A Gene Delivery System Activatable by Disease-Associated Matrix Metalloproteinases. Human Gene Therapy, 1997, 8, 729-738.	1.4	94
61	Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell–activating polypeptide. Blood, 2002, 99, 2342-2350.	0.6	91
62	Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Therapy, 2001, 8, 1456-1463.	2.3	89
63	Analysis of a Highly Flexible Conformational Immunogenic Domain A in Hepatitis C Virus E2. Journal of Virology, 2005, 79, 13199-13208.	1.5	89
64	The Mechanism of HCV Entry into Host Cells. Progress in Molecular Biology and Translational Science, 2015, 129, 63-107.	0.9	89
65	High-density lipoproteins reduce the neutralizing effect of hepatitis C virus (HCV)-infected patient antibodies by promoting HCV entry. Journal of General Virology, 2006, 87, 2577-2581.	1.3	88
66	Comparison of Efficiency of Infection of Human Gene Therapy Target Cells <i>via</i> Four Different Retroviral Receptors. Human Gene Therapy, 1996, 7, 913-919.	1.4	87
67	Modifying the host range properties of retroviral vectors. Journal of Gene Medicine, 1999, 1, 300-311.	1.4	87
68	Hepatitis C Virus Is Primed by CD81 Protein for Low pH-dependent Fusion. Journal of Biological Chemistry, 2011, 286, 30361-30376.	1.6	87
69	Nipah Virus Uses Leukocytes for Efficient Dissemination within a Host. Journal of Virology, 2011, 85, 7863-7871.	1.5	86
70	Retrovirus-Mediated Gene Transfer into Human CD34 ⁺ 38 ^{low} Primitive Cells Capable of Reconstituting Long-Term Cultures <i>In Vitro</i> and Nonobese Diabetic–Severe Combined Immunodeficiency Mice <i>In Vivo</i> . Human Gene Therapy, 1998, 9, 1497-1511.	1.4	84
71	Vaccine-induced early control of hepatitis C virus infection in chimpanzees fails to impact on hepatic PD-1 and chronicity. Hepatology, 2007, 45, 602-613.	3.6	84
72	Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology, 2014, 59, 776-788.	3.6	83

#	Article	IF	CITATIONS
73	Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors. Blood, 2009, 114, 3173-3180.	0.6	82
74	TLX Homeodomain Oncogenes Mediate T Cell Maturation Arrest in T-ALL via Interaction with ETS1 and Suppression of TCRα Gene Expression. Cancer Cell, 2012, 21, 563-576.	7.7	81
75	The Exchangeable Apolipoprotein ApoC-I Promotes Membrane Fusion of Hepatitis C Virus. Journal of Biological Chemistry, 2007, 282, 32357-32369.	1.6	80
76	Biochemical Mechanism of Hepatitis C Virus Inhibition by the Broad-Spectrum Antiviral Arbidol. Biochemistry, 2007, 46, 6050-6059.	1.2	80
77	Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology, 2012, 425, 31-39.	1.1	80
78	Activation of a Cell Entry Pathway Common to Type C Mammalian Retroviruses by Soluble Envelope Fragments. Journal of Virology, 2000, 74, 295-304.	1.5	79
79	Synthesis, Assembly, and Processing of the Env ERVWE1/Syncytin Human Endogenous Retroviral Envelope. Journal of Virology, 2005, 79, 5585-5593.	1.5	78
80	Amphipathic DNA Polymers Inhibit Hepatitis C Virus Infection by Blocking Viral Entry. Gastroenterology, 2009, 137, 673-681.	0.6	78
81	Strategies for Targeting Lentiviral Vectors. Current Gene Therapy, 2008, 8, 449-460.	0.9	76
82	Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. Journal of Molecular Cell Biology, 2016, 8, 349-362.	1.5	76
83	Retargeting gene delivery using surface-engineered retroviral vector particles. Current Opinion in Biotechnology, 2001, 12, 461-466.	3.3	75
84	Five Recombinant Simian Immunodeficiency Virus Pseudotypes Lead to Exclusive Transduction of Retinal Pigmented Epithelium in Rat. Molecular Therapy, 2002, 6, 446-454.	3.7	75
85	Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry. Journal of Virology, 2006, 80, 1302-1310.	1.5	75
86	Sustained E2 antibody response correlates with reduced peak viremia after hepatitis C virus infection in the chimpanzee. Hepatology, 2005, 42, 1429-1436.	3.6	74
87	Basic Residues in Hypervariable Region 1 of Hepatitis C Virus Envelope Glycoprotein E2 Contribute to Virus Entry. Journal of Virology, 2005, 79, 15331-15341.	1.5	74
88	HCV transmission by hepatic exosomes establishes a productive infection. Journal of Hepatology, 2014, 60, 674-675.	1.8	74
89	Activation of Membrane Fusion by Murine Leukemia Viruses Is Controlled in cis or in trans by Interactions between the Receptor-Binding Domain and a Conserved Disulfide Loop of the Carboxy Terminus of the Surface Glycoprotein. Journal of Virology, 2001, 75, 3685-3695.	1.5	73
90	Protection Against Henipavirus Infection by Use of Recombinant Adeno-Associated Virus–Vector Vaccines. Journal of Infectious Diseases, 2013, 207, 469-478.	1.9	72

#	Article	IF	CITATIONS
91	In vivo selection of protease cleavage sites from retrovirus display libraries. Nature Biotechnology, 1998, 16, 951-954.	9.4	71
92	Intracellular Trafficking of Gag and Env Proteins and Their Interactions Modulate Pseudotyping of Retroviruses. Journal of Virology, 2004, 78, 7153-7164.	1.5	68
93	Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Therapy, 1999, 6, 1552-1557.	2.3	66
94	Cell Entry of Enveloped Viruses. Advances in Genetics, 2011, 73, 121-183.	0.8	66
95	Mutations That Alter Use of Hepatitis C Virus Cell Entry Factors Mediate Escape From Neutralizing Antibodies. Gastroenterology, 2012, 143, 223-233.e9.	0.6	66
96	The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology, 2013, 57, 492-504.	3.6	66
97	A new avian leukosis virus-based packaging cell line that uses two separate transcomplementing helper genomes. Journal of Virology, 1990, 64, 1070-1078.	1.5	66
98	Highly Efficient Retrovirus-Mediated Gene Transfer into Rat HepatocytesIn Vivo. Human Gene Therapy, 1997, 8, 1491-1494.	1.4	65
99	Neutralizing Host Responses in Hepatitis C Virus Infection Target Viral Entry at Postbinding Steps and Membrane Fusion. Gastroenterology, 2008, 135, 1719-1728.e1.	0.6	65
100	Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Therapy, 2004, 11, 591-598.	2.3	64
101	Packaging of Endogenous Retroviral Sequences in Retroviral Vectors Produced by Murine and Human Packaging Cells. Journal of Virology, 1998, 72, 2671-2676.	1.5	64
102	Advances in the Field of Lentivector-based Transduction of T and B Lymphocytes for Gene Therapy. Molecular Therapy, 2010, 18, 1748-1757.	3.7	62
103	Human monoclonal antibodies that react with the E2 glycoprotein of hepatitis C virus and possess neutralizing activity. Hepatology, 2005, 42, 1055-1062.	3.6	61
104	Germline transmission of exogenous genes in chickens using helper-free ecotropic avian leukosis virus-based vectors. Transgenic Research, 1995, 4, 369-377.	1.3	60
105	Intracellular Versus Cell Surface Assembly of Retroviral Pseudotypes Is Determined by the Cellular Localization of the Viral Glycoprotein, Its Capacity to Interact with Gag, and the Expression of the Nef Protein. Journal of Biological Chemistry, 2006, 281, 528-542.	1.6	60
106	Measles Virus Glycoprotein-Pseudotyped Lentiviral Vector-Mediated Gene Transfer into Quiescent Lymphocytes Requires Binding to both SLAM and CD46 Entry Receptors. Journal of Virology, 2011, 85, 5975-5985.	1.5	60
107	X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. Journal of Allergy and Clinical Immunology, 2016, 138, 1681-1689.e8.	1.5	60
108	Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood, 2016, 127, 3040-3053.	0.6	60

#	Article	IF	CITATIONS
109	Poloâ€likeâ€kinase 1 is a proviral host factor for hepatitis B virus replication. Hepatology, 2017, 66, 1750-1765.	3.6	60
110	Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. Journal of Virology, 2015, 89, 10333-10346.	1.5	59
111	A New System for Stringent, High-Titer Vesicular Stomatitis Virus G Protein-Pseudotyped Retrovirus Vector Induction by Introduction of Cre Recombinase into Stable Prepackaging Cell Lines. Journal of Virology, 1998, 72, 1115-1121.	1.5	59
112	Retroviral Display of Antibody Fragments; Interdomain Spacing Strongly Influences Vector Infectivity. Human Gene Therapy, 1996, 7, 2157-2164.	1.4	58
113	Functional Characterization of Adenoviral/Retroviral Chimeric Vectors and Their Use for Efficient Screening of Retroviral Producer Cell Lines. Human Gene Therapy, 1999, 10, 189-200.	1.4	58
114	Retroviral Display of Functional Binding Domains Fused to the Amino Terminus of Influenza Hemagglutinin. Human Gene Therapy, 1999, 10, 1533-1544.	1.4	57
115	Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virology Journal, 2006, 3, 70.	1.4	57
116	IL-7Rα Gene Expression Is Inversely Correlated with Cell Cycle Progression in IL-7-Stimulated T Lymphocytes. Journal of Immunology, 2006, 176, 6702-6708.	0.4	57
117	Direct antiviral properties of TLR ligands against HBV replication in immune-competent hepatocytes. Scientific Reports, 2018, 8, 5390.	1.6	57
118	Retroviral Vector Targeting to Melanoma Cells by Single-Chain Antibody Incorporation in Envelope. Human Gene Therapy, 1998, 9, 737-746.	1.4	55
119	Identification of an Envelope Protein from the FRD Family of Human Endogenous Retroviruses (HERV-FRD) Conferring Infectivity and Functional Conservation among Simians. Journal of Virology, 2004, 78, 1050-1054.	1.5	55
120	Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses, 2019, 11, 30.	1.5	55
121	DNA vaccines encoding retrovirus-based virus-like particles induce efficient immune responses without adjuvant. Vaccine, 2006, 24, 2643-2655.	1.7	53
122	Evidence for Protection against Chronic Hepatitis C Virus Infection in Chimpanzees by Immunization with Replicating Recombinant Vaccinia Virus. Journal of Virology, 2008, 82, 10896-10905.	1.5	53
123	Surface-engineering of lentiviral vectors. Journal of Gene Medicine, 2004, 6, S83-S94.	1.4	52
124	A Hyperfusogenic Gibbon Ape Leukemia Envelope Glycoprotein: Targeting of a Cytotoxic Gene by Ligand Display. Human Gene Therapy, 2000, 11, 817-826.	1.4	51
125	Strategies for Retargeted Gene Delivery Using Vectors Derived from Lentiviruses. Current Gene Therapy, 2004, 4, 427-443.	0.9	51
126	Assembly of functional hepatitis C virus glycoproteins on infectious pseudoparticles occurs intracellularly and requires concomitant incorporation of E1 and E2 glycoproteins. Journal of General Virology, 2005, 86, 3189-3199.	1.3	51

#	Article	IF	CITATIONS
127	Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. Journal of General Virology, 2007, 88, 1133-1143.	1.3	51
128	A Point Mutation Leading to Hepatitis C Virus Escape from Neutralization by a Monoclonal Antibody to a Conserved Conformational Epitope. Journal of Virology, 2008, 82, 6067-6072.	1.5	51
129	Characterization of Lassa Virus Cell Entry and Neutralization with Lassa Virus Pseudoparticles. Journal of Virology, 2009, 83, 3228-3237.	1.5	51
130	Retrovirus Targeting by Tropism Restriction to Melanoma Cells. Journal of Virology, 1999, 73, 6923-6929.	1.5	51
131	Significant Redox Insensitivity of the Functions of the SARS-CoV Spike Glycoprotein. Journal of Biological Chemistry, 2006, 281, 9200-9204.	1.6	49
132	Detection of the hepatitis B virus (HBV) covalently-closed-circular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector. Antiviral Research, 2017, 145, 14-19.	1.9	49
133	Retroviral Vectors Pseudotyped with Lymphocytic Choriomeningitis Virus. Journal of Virology, 1999, 73, 6114-6116.	1.5	47
134	Incorporation of Fowl Plague Virus Hemagglutinin into Murine Leukemia Virus Particles and Analysis of the Infectivity of the Pseudotyped Retroviruses. Journal of Virology, 1998, 72, 5313-5317.	1.5	46
135	Definition of an Amino-terminal Domain of the Human T-cell Leukemia Virus Type 1 Envelope Surface Unit That Extends the Fusogenic Range of an Ecotropic Murine Leukemia Virus. Journal of Biological Chemistry, 2000, 275, 23417-23420.	1.6	45
136	Use of blood outgrowth endothelial cells as virus-producing vectors for gene delivery to tumors. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H494-H500.	1.5	45
137	Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the E1E2 heterodimer. Journal of General Virology, 2005, 86, 2793-2798.	1.3	45
138	Modification of retroviral tropism by display of IGF-I 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 285, 485-494.	2.0	44
139	Host neutralizing responses and pathogenesis of hepatitis C virus infection. Hepatology, 2008, 48, 299-307.	3.6	44
140	Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy. PLoS Genetics, 2009, 5, e1000422.	1.5	43
141	Novel lentiviral vectors displaying "early-acting cytokines―selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells. Blood, 2005, 106, 3386-3395.	0.6	42
142	Receptor co-operation in retrovirus entry: recruitment of an auxiliary entry mechanism after retargeted binding. EMBO Journal, 1997, 16, 1214-1223.	3.5	41
143	Lentiviral transduction of human hematopoietic cells by HIV-1- and SIV-based vectors containing a bicistronic cassette driven by various internal promoters. Journal of Gene Medicine, 2005, 7, 1158-1171.	1.4	41
144	Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Reviews in Molecular Medicine, 2011, 13, e13.	1.6	41

#	Article	IF	CITATIONS
145	Clearance of Genotype 1b Hepatitis C Virus in Chimpanzees in the Presence of Vaccine-Induced E1-Neutralizing Antibodies. Journal of Infectious Diseases, 2011, 204, 837-844.	1.9	41
146	A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice. Blood, 2012, 119, 1139-1150.	0.6	41
147	Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine, 2013, 31, 2778-2785.	1.7	41
148	A Lentiviral Vector Allowing Physiologically Regulated Membrane-anchored and Secreted Antibody Expression Depending on B-cell Maturation Status. Molecular Therapy, 2015, 23, 1734-1747.	3.7	41
149	Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγcâ€∤―mice. Journal of Thrombosis and Haemostasis, 2016, 14, 2478-2492.	1.9	41
150	Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses, 2020, 12, 1016.	1.5	41
151	Masking of Retroviral Envelope Functions by Oligomerizing Polypeptide Adaptors. Virology, 1997, 234, 51-61.	1.1	40
152	High Level of Retrovirus-Mediated Gene Transfer into Dendritic Cells Derived from Cord Blood and Mobilized Peripheral Blood CD34+ Cells. Human Gene Therapy, 1999, 10, 175-187.	1.4	40
153	Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology, 2014, 59, 1320-1330.	3.6	40
154	Studying HCV Cell Entry with HCV Pseudoparticles (HCVpp). Methods in Molecular Biology, 2009, 510, 279-293.	0.4	39
155	Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Current Opinion in Pharmacology, 2015, 24, 79-85.	1.7	38
156	Inactivation of the IGF-I receptor gene in primary Sertoli cells highlights the autocrine effects of IGF-I. Journal of Endocrinology, 2007, 194, 557-568.	1.2	37
157	Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent. Blood Advances, 2017, 1, 2088-2104.	2.5	37
158	Generation of a helper cell line for packaging avian leukosis virus-based vectors. Journal of Virology, 1989, 63, 513-522.	1.5	37
159	Hepatitis C virus has a genetically determined lymphotropism through co-receptor B7.2. Nature Communications, 2017, 8, 13882.	5.8	35
160	Improved lentiviral vectors for Wiskott–Aldrich syndrome gene therapy mimic endogenous expression profiles throughout haematopoiesis. Gene Therapy, 2008, 15, 930-941.	2.3	34
161	Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Reports, 2016, 17, 1357-1368.	2.9	34
162	The interplays between Crimean-Congo hemorrhagic fever virus (CCHFV) M segment-encoded accessory proteins and structural proteins promote virus assembly and infectivity. PLoS Pathogens, 2020, 16, e1008850.	2.1	34

#	Article	IF	CITATIONS
163	Recombinant retrovirusâ€like particle forming DNA vaccines in primeâ€boost immunization and their use for hepatitis C virus vaccine development. Journal of Gene Medicine, 2009, 11, 313-325.	1.4	33
164	Lentiviral Vectors Displaying Modified Measles Virus gp Overcome Pre-existing Immunity in In Vivo-like Transduction of Human T and B Cells. Molecular Therapy, 2012, 20, 1699-1712.	3.7	33
165	Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia. Cancer Discovery, 2016, 6, 972-985.	7.7	33
166	Farnesoid X receptorâ€Î± is a proviral host factor for hepatitis B virus that is inhibited by ligands <i>in vitro</i> and <i>in vivo</i> . FASEB Journal, 2019, 33, 2472-2483.	0.2	33
167	Targeted retroviral vectors displaying a cleavage site-engineered hemagglutinin (HA) through HA–protease interactions. Molecular Therapy, 2006, 14, 735-744.	3.7	32
168	Tumor antigen–specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor–modified T cells. Nature Biotechnology, 2002, 20, 256-263.	9.4	30
169	A Recurrent Activating Missense Mutation in Waldenström Macroglobulinemia Affects the DNA Binding of the ETS Transcription Factor SPI1 and Enhances Proliferation. Cancer Discovery, 2019, 9, 796-811.	7.7	30
170	High Levels of SOX5 Decrease Proliferative Capacity of Human B Cells, but Permit Plasmablast Differentiation. PLoS ONE, 2014, 9, e100328.	1.1	30
171	Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer. Cancer Gene Therapy, 2010, 17, 256-265.	2.2	29
172	ADAR1 enhances HTLV-1 and HTLV-2 replication through inhibition of PKR activity. Retrovirology, 2014, 11, 93.	0.9	29
173	Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein. Journal of Virology, 2002, 76, 9673-9685.	1.5	28
174	Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production. PLoS Pathogens, 2020, 16, e1008593.	2.1	28
175	Transduction of Human Hematopoietic Stem Cells by Lentiviral Vectors Pseudotyped with the RD114-TR Chimeric Envelope Glycoprotein. Human Gene Therapy, 2007, 18, 811-820.	1.4	27
176	Lentiviral Vector Gene Transfer into Human T Cells. Methods in Molecular Biology, 2009, 506, 97-114.	0.4	27
177	Daclatasvir Prevents Hepatitis C Virus Infectivity by Blocking Transfer of the Viral Genome to Assembly Sites. Gastroenterology, 2017, 152, 895-907.e14.	0.6	27
178	Measles Virus Glycoprotein-Pseudotyped Lentiviral Vectors Are Highly Superior to Vesicular Stomatitis Virus G Pseudotypes for Genetic Modification of Monocyte-Derived Dendritic Cells. Journal of Virology, 2012, 86, 5192-5203.	1.5	26
179	Heparan Sulfate-Dependent Enhancement of Henipavirus Infection. MBio, 2015, 6, e02427.	1.8	26
180	Functional and Biochemical Characterization of Hepatitis C Virus (HCV) Particles Produced in a Humanized Liver Mouse Model. Journal of Biological Chemistry, 2015, 290, 23173-23187.	1.6	26

#	Article	IF	CITATIONS
181	Gene-corrected human Munc13-4–deficient CD8+ T cells can efficiently restrict EBV-driven lymphoproliferation in immunodeficient mice. Blood, 2016, 128, 2859-2862.	0.6	26
182	Preliminary Evidence for Hepatitis Delta Virus Exposure in Patients Who Are Apparently Not Infected With Hepatitis B Virus. Hepatology, 2021, 73, 861-864.	3.6	26
183	Use of Helper Cells with Two Host Ranges to Generate High-Titer Retroviral Vectors. Virology, 1993, 193, 385-395.	1.1	25
184	Efficient transduction and seeding of human endothelial cells onto metallic stents using bicistronic pseudo-typed retroviral vectors encoding vascular endothelial growth factor. Cardiovascular Revascularization Medicine, 2006, 7, 173-178.	0.3	25
185	Hepatitis C virus E2 links soluble human CD81 and SR-B1 protein. Virus Research, 2006, 121, 58-64.	1.1	25
186	Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector. Transgenic Research, 2010, 19, 799-808.	1.3	25
187	Identification of Interactions in the E1E2 Heterodimer of Hepatitis C Virus Important for Cell Entry. Journal of Biological Chemistry, 2011, 286, 23865-23876.	1.6	25
188	Baboon Envelope Pseudotyped "Nanoblades―Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34+ Cells and Knock-in of AAV6-Encoded Donor DNA in CD34+ Cells. Frontiers in Genome Editing, 2021, 3, 604371.	2.7	25
189	Vectors derived from simian immunodeficiency virus (SIV). Biochimie, 2002, 84, 1161-1171.	1.3	24
190	Endothelial cells are activated by angiopoeitin-1 gene transfer and produce coordinated sprouting in vitro and arteriogenesis in vivo. Biochemical and Biophysical Research Communications, 2007, 359, 263-268.	1.0	24
191	CD19 and CD20 Targeted Vectors Induce Minimal Activation of Resting B Lymphocytes. PLoS ONE, 2013, 8, e79047.	1.1	24
192	Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Human Gene Therapy, 2019, 30, 1477-1493.	1.4	24
193	Sensing of cell-associated HTLV by plasmacytoid dendritic cells is regulated by dense β-galactoside glycosylation. PLoS Pathogens, 2019, 15, e1007589.	2.1	24
194	The mycotoxin aflatoxin B1 stimulates Epstein–Barr virus-induced B-cell transformation in <i>in vitro</i> and <i>in vivo</i> experimental models. Carcinogenesis, 2015, 36, 1440-1451.	1.3	23
195	Pharmacological Induction of a Progenitor State for the Efficient Expansion of Primary Human Hepatocytes. Hepatology, 2019, 69, 2214-2231.	3.6	22
196	Newcastle disease virus (NDV) vaccine based on immunization with avian cells expressing the NDV hemagglutinin-beuraminidase glycoprotein. Virology, 1991, 185, 862-866.	1.1	21
197	HDV-Like Viruses. Viruses, 2021, 13, 1207.	1.5	21
198	Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Advances, 2019, 3, 461-475.	2.5	21

#	Article	IF	CITATIONS
199	Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies. PLoS ONE, 2013, 8, e52306.	1.1	20
200	A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism. PLoS Pathogens, 2018, 14, e1006908.	2.1	20
201	An Acidic Cluster of the Cytoplasmic Tail of the RD114 Virus Glycoprotein Controls Assembly of Retroviral Envelopes. Traffic, 2007, 8, 835-847.	1.3	19
202	Mutations in the H, F, or M Proteins Can Facilitate Resistance of Measles Virus to Neutralizing Human Anti-MV Sera. Advances in Virology, 2014, 2014, 1-18.	0.5	19
203	Stable micro-dystrophin gene transfer using an integrating adeno-retroviral hybrid vector ameliorates the dystrophic pathology in mdx mouse muscle. Human Molecular Genetics, 2002, 11, 1719-1730.	1.4	18
204	A serum protein factor mediates maturation and apoB-association of HCV particles in the extracellular milieu. Journal of Hepatology, 2019, 70, 626-638.	1.8	18
205	Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats. Journal of Virology, 2019, 93, .	1.5	18
206	DNA Vaccination with a Singleâ€Plasmid Construct Coding for Viruslike Particles Protects Mice against Infection with a Highly Pathogenic Avian Influenza A Virus. Journal of Infectious Diseases, 2009, 200, 181-190.	1.9	17
207	Lentiviral vectors and transduction of human cancer B cells. Blood, 2010, 116, 498-500.	0.6	17
208	In Vivo Gene Delivery into hCD34+ Cells in a Humanized Mouse Model. Methods in Molecular Biology, 2011, 737, 367-390.	0.4	17
209	Gene transfer and genetic modification of embryonic stem cells by Cre- and Cre-PR-expressing MESV-based retroviral vectors. Journal of Gene Medicine, 2004, 6, 32-42.	1.4	16
210	An Antiproliferative Genetic Screening Identifies a Peptide Aptamer That Targets Calcineurin and Up-regulates Its Activity. Molecular and Cellular Proteomics, 2007, 6, 451-459.	2.5	16
211	The scavenger receptor BI and its ligand, HDL: partners in crime against HCV neutralizing antibodies. Journal of Viral Hepatitis, 2007, 14, 68-76.	1.0	16
212	Contribution of Redox Status to Hepatitis C Virus E2 Envelope Protein Function and Antigenicity. Journal of Biological Chemistry, 2008, 283, 26340-26348.	1.6	16
213	A Point Mutation in the N-Terminal Amphipathic Helix α ₀ in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding. Journal of Virology, 2017, 91, .	1.5	16
214	Report of One-Year Prospective Surveillance of SARS-CoV-2 in Dogs and Cats in France with Various Exposure Risks: Confirmation of a Low Prevalence of Shedding, Detection and Complete Sequencing of an Alpha Variant in a Cat. Viruses, 2021, 13, 1759.	1.5	16
215	The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathogens, 2017, 13, e1006774.	2.1	16
216	Defective Retroviral Endogenous RNA Is Efficiently Transmitted by Infectious Particles Produced on an Avian Retroviral Vector Packaging Cell Line. Virology, 1995, 207, 271-275.	1.1	15

#	Article	IF	CITATIONS
217	Targeted Retroviral Infection of Tumor Cells by Receptor Cooperation. Journal of Virology, 2003, 77, 2753-2756.	1.5	15
218	Optimized gene transfer into human primary leukemic T cell with NOD-SCID/leukemia-initiating cell activity. Leukemia, 2010, 24, 646-649.	3.3	15
219	Mouse ES cells over-expressing the transcription factor NeuroD1 show increased differentiation towards endocrine lineages and insulin-expressing cells. International Journal of Developmental Biology, 2009, 53, 569-578.	0.3	15
220	Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2022, 375, 104-109.	6.0	15
221	A universal transgene silencing method based on RNA interference. Nucleic Acids Research, 2004, 32, e102-e102.	6.5	14
222	Antigen-specific tolerance approach for rheumatoid arthritis: Past, present and future. Joint Bone Spine, 2021, 88, 105164.	0.8	14
223	Cene Therapy in Fanconi Anemia: A Matter of Time, Safety and Gene Transfer Tool Efficiency. Current Gene Therapy, 2017, 16, 297-308.	0.9	14
224	Characterization of a semi-replicative gene delivery system allowing propagation of complementary defective retroviral vectors. Journal of Gene Medicine, 2005, 7, 276-287.	1.4	13
225	Towards Physiologically and Tightly Regulated Vectored Antibody Therapies. Cancers, 2020, 12, 962.	1.7	13
226	Exploiting B Cell Transfer for Cancer Therapy: Engineered B Cells to Eradicate Tumors. International Journal of Molecular Sciences, 2021, 22, 9991.	1.8	13
227	Infection of Human Liver Myofibroblasts by Hepatitis C Virus: A Direct Mechanism of Liver Fibrosis in Hepatitis C. PLoS ONE, 2015, 10, e0134141.	1.1	13
228	Analysis of ALV-Based Packaging Cell Lines for Production of Contaminant Defective Viruses. Virology, 1995, 209, 671-675.	1.1	12
229	Retroviral Vectors for the Expression of Two Genes in Human Multipotent Neural Precursors and Their Differentiated Neuronal and Glial Progeny. Human Gene Therapy, 1999, 10, 1129-1138.	1.4	12
230	Molecular determinants of SR-B1-dependent Plasmodium sporozoite entry into hepatocytes. Scientific Reports, 2020, 10, 13509.	1.6	12
231	HCV Interplay with Lipoproteins: Inside or Outside the Cells?. Viruses, 2020, 12, 434.	1.5	12
232	A fusion peptide in preS1 and the human protein disulfide isomerase ERp57 are involved in hepatitis B virus membrane fusion process. ELife, 2021, 10, .	2.8	12
233	Stem Cell Factor-Displaying Simian Immunodeficiency Viral Vectors Together with a Low Conditioning Regimen Allow for Long-Term Engraftment of Gene-Marked Autologous Hematopoietic Stem Cells in Macaques. Human Gene Therapy, 2012, 23, 754-768.	1.4	10
234	Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses, 2021, 13, 784.	1.5	10

#	Article	IF	CITATIONS
235	Evidence for long-term association of virion-delivered HBV core protein with cccDNA independently of viral protein production. JHEP Reports, 2021, 3, 100330.	2.6	10
236	Importance of 3' non-coding sequences for efficient retrovirus-mediated gene transfer in avian cells revealed by self-inactivating vectors. Journal of General Virology, 1993, 74, 39-46.	1.3	9
237	Transposable elements behavior following viral genomic stress inDrosophila melanogaster inbred line. Journal of Molecular Evolution, 1996, 43, 19-27.	0.8	9
238	Detection of Neutralizing Antibodies with HCV Pseudoparticles (HCVpp). Methods in Molecular Biology, 2009, 510, 427-438.	0.4	9
239	Efficient transduction of healthy and malignant plasma cells by lentiviral vectors pseudotyped with measles virus glycoproteins. Leukemia, 2012, 26, 1663-1670.	3.3	9
240	Specialization of Hepatitis C Virus Envelope Glycoproteins for B Lymphocytes in Chronically Infected Patients. Journal of Virology, 2016, 90, 992-1008.	1.5	9
241	A Novel BaEVRless-Pseudotyped γ-Globin Lentiviral Vector Drives High and Stable Fetal Hemoglobin Expression and Improves Thalassemic ErythropoiesisIn Vitro. Human Gene Therapy, 2019, 30, 601-617.	1.4	8
242	Patterns of Integration and Expression of Retroviral, Non-Replicative Vectors in Avian Embryos: Embryo Developmental Stage and Virus Subgroup Envelope Modulate Tissue-Tropism. Cell Adhesion and Communication, 1993, 1, 119-132.	1.7	7
243	Post-mitotic, differentiated myotubes efficiently produce retroviral vector from hybrid adeno-retrovirus templates. Gene Therapy, 2001, 8, 1580-1586.	2.3	7
244	The Mouse IAPE Endogenous Retrovirus Can Infect Cells through Any of the Five GPI-Anchored EphrinA Proteins. PLoS Pathogens, 2011, 7, e1002309.	2.1	7
245	T- and B-cell responses to multivalent prime-boost DNA and viral vectored vaccine combinations against hepatitis C virus in non-human primates. Gene Therapy, 2016, 23, 753-759.	2.3	7
246	Addressing the next challenges: A summary of the 22nd international symposium on hepatitis C virus and related viruses. Journal of Hepatology, 2016, 64, 968-973.	1.8	7
247	Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction. Viruses, 2020, 12, 1427.	1.5	7
248	Hepatitis C virus core protein uses triacylglycerols to fold onto the endoplasmic reticulum membrane. Traffic, 2022, 23, 63-80.	1.3	7
249	HCV and lipoproteins: Is oxLDL an Achilles' heel of the Trojan horse?. Hepatology, 2006, 43, 903-905.	3.6	6
250	Engineering the Surface Glycoproteins of Lentiviral Vectors for Targeted Gene Transfer. Cold Spring Harbor Protocols, 2009, 2009, pdb.top59.	0.2	6
251	Structure and Expression of Endogenous Retroviral Sequences in the Permanent LMH Chicken Cell Line. Poultry Science, 1995, 74, 127-135.	1.5	5
252	Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34+bone marrow cells, following gamma irradiation in cynomolgus macaques. Retrovirology, 2008, 5, 50.	0.9	5

#	Article	IF	CITATIONS
253	Generation of transgenic mice expressing EGFP protein fused to NP68 MHC class I epitope using lentivirus vectors. Genesis, 2013, 51, 193-200.	0.8	5
254	Baboon envelope pseudotyped lentiviral vectors: a highly efficient new tool to genetically manipulate T-cell acute lymphoblastic leukaemia-initiating cells. Leukemia, 2017, 31, 977-980.	3.3	5
255	Incorporation of Simian Virus 5 Fusion Protein into Murine Leukemia Virus Particles and Its Effect on the Co-incorporation of Retroviral Envelope Clycoproteins. Virology, 2000, 267, 49-57.	1.1	4
256	SIV Vectors. , 2003, 229, 233-249.		4
257	Hematopoietic Stem Cell Targeting with Surface-Engineered Lentiviral Vectors. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5276.	0.2	4
258	Too smart to fail—how viruses exploit the complexity of host cells during entry. Current Opinion in Virology, 2011, 1, 3-5.	2.6	4
259	Acute hepatitis C virus infection induces antiâ€host cell receptor antibodies with virusâ€neutralizing properties. Hepatology, 2015, 62, 726-736.	3.6	4
260	Determinants Involved in Hepatitis C Virus and GB Virus B Primate Host Restriction. Journal of Virology, 2015, 89, 12131-12144.	1.5	4
261	Nup98 Is Subverted from Annulate Lamellae by Hepatitis C Virus Core Protein to Foster Viral Assembly. MBio, 2022, 13, e0292321.	1.8	4
262	Suspension packaging cell lines for the simplified generation of T-cell receptor encoding retrovirus vector particles. Gene Therapy, 2007, 14, 595-603.	2.3	3
263	Efficient adoptive transfer of autologous modified B cells: a new humanized platform mouse model for testing B cells reprogramming therapies. Cancer Immunology, Immunotherapy, 2022, 71, 1771-1775.	2.0	3
264	A cell-based bicistronic lentiviral reporter system for identification of inhibitors of the hepatitis C virus internal ribosome entry site. Journal of Virological Methods, 2009, 158, 152-159.	1.0	2
265	HIV fusion: Catch me if you can. Journal of Biological Chemistry, 2020, 295, 15196-15197.	1.6	2
266	Unlike for cellular mRNAs and other viral internal ribosome entry sites (IRESs), the eIF3 subunit e is not required for the translational activity of the HCV IRES. Journal of Biological Chemistry, 2020, 295, 1843-1856.	1.6	2
267	Membrane Fusion Assays for Studying Entry Hepatitis C Virus into Cells. Methods in Molecular Biology, 2019, 1911, 219-234.	0.4	2
268	Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2021, , eabl6502.	6.0	2
269	Vectors derived from avian leukosis and sarcoma viruses. Journal of Molecular Medicine, 1995, 73, 181-7.	1.7	1
270	Low cross-neutralization of hepatitis C correlates with liver disease in immunocompromized patients. Aids, 2015, 29, 1025-1033.	1.0	1

#	Article	IF	CITATIONS
271	A master regulator of tight junctions involved in hepatitis C virus entry and pathogenesis. Hepatology, 2017, 65, 1756-1758.	3.6	1
272	Crimean-Congo hemorrhagic fever: a growing threat to Europe. Comptes Rendus - Biologies, 2022, 345, 17-36.	0.1	1
273	Production of SIV Vectors for Gene Delivery. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5598-pdb.prot5598.	0.2	0
274	Reconstitution of the Myeloid and Lymphoid Compartments after the Transplantation of Autologous and Genetically Modified CD34+ Bone Marrow Cells, Following Gamma Irradiation in Cynomolgus Macaques. , 2011, , 133-159.		0
275	Structural Basis of Neutralization by Human Antibodies Targeting Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Gc. SSRN Electronic Journal, 0, , .	0.4	0