Bilal Ahmad Padder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Wide Association Study of Anthracnose Resistance in Andean Beans (Phaseolus vulgaris). PLoS ONE, 2016, 11, e0156391.	2.5	138
2	Transcriptome Profiling of the Phaseolus vulgaris - Colletotrichum lindemuthianum Pathosystem. PLoS ONE, 2016, 11, e0165823.	2.5	51
3	Pathological and molecular diversity inColletotrichum lindemuthianum(bean anthracnose) across Himachal Pradesh, a north-western Himalayan state of India. Australasian Plant Pathology, 2007, 36, 191.	1.0	37
4	Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji. Scientific Reports, 2018, 8, 4091.	3.3	32
5	Genetic diversity and gene flow estimates among five populations of Colletotrichum lindemuthianum across Himachal Pradesh. Physiological and Molecular Plant Pathology, 2007, 70, 8-12.	2.5	29
6	North-Western Himalayan Common Beans: Population Structure and Mapping of Quantitative Anthracnose Resistance Through Genome Wide Association Study. Frontiers in Plant Science, 2020, 11, 571618.	3.6	27
7	Temporal expression of candidate genes at the Co-1 locus and their interaction with other defense related genes in common bean. Physiological and Molecular Plant Pathology, 2019, 108, 101424.	2.5	24
8	Investigating the virulence and genetic diversity of Colletotrichum lindemuthianum populations distributed in the North Western Himalayan hill states. Journal of Plant Pathology, 2019, 101, 677-688.	1.2	20
9	<i>In vitro and in vivo</i> antagonism of biocontrol agents against <i>Colletotrichum lindemuthianum</i> causing bean anthracnose. Archives of Phytopathology and Plant Protection, 2011, 44, 961-969.	1.3	17
10	Virulence and Molecular Diversity of <i><scp>V</scp>enturia inaequalis</i> in Commercial Apple Growing Regions in <scp>K</scp> ashmir. Journal of Phytopathology, 2013, 161, 271-279.	1.0	15
11	Morpho-cultural, pathological and molecular variability in Thyrostroma carpophilum causing shot hole of stone fruits in India. European Journal of Plant Pathology, 2018, 151, 613-627.	1.7	14
12	Phaseolus vulgaris-Colletotrichum lindemuthianum Pathosystem in the Post-Genomic Era: An Update. Current Microbiology, 2022, 79, 36.	2.2	14
13	Virulence and RAPD data—A tool to study the evolutionary trends of <i>Colletotrichum lindemuthianum</i> virulences in the North Western Himalayan region of India. Archives of Phytopathology and Plant Protection, 2009, 42, 610-617.	1.3	13
14	Evaluation of Bioagents and Biopesticides against Colletotrichum lindemuthianum and its Integrated Management in Common Bean. Notulae Scientia Biologicae, 2010, 2, 72-76.	0.4	13
15	Microsatellite mining in the genus Colletotrichum. Gene Reports, 2018, 13, 84-93.	0.8	13
16	Pathogenic and coat protein characterization confirming the occurrence of Bean common mosaic virus on common bean (Phaseolus vulgaris) in Kashmir, India. Phytoparasitica, 2014, 42, 317-322.	1.2	11
17	Identification and Genetic Diversity Analysis of Ascochyta Species Associated with Blight Complex of Pea in a Northwestern Hill State of India. Agricultural Research, 2012, 1, 325-337.	1.7	8
18	Diversity evaluation of fruit quality of apple (MalusÂ×Âdomestica Borkh.) germplasm through cluster and principal component analysis. Indian Journal of Plant Physiology, 2017, 22, 221-226.	0.8	8

BILAL AHMAD PADDER

#	Article	IF	CITATIONS
19	Genetic Differentiation among Populations of Venturia inaequalis in Kashmir: A North-Western State of India. Asian Journal of Plant Pathology, 2011, 5, 75-83.	0.3	8
20	Thyrostroma carpophilum insertional mutagenesis: A step towards understanding its pathogenicity mechanism. Journal of Microbiological Methods, 2020, 171, 105885.	1.6	7
21	Distribution of Apple Scab Race Flora and Identification of Resistant Sources against Venturia inaequalis in Kashmir. Plant Pathology Journal, 2015, 14, 196-201.	0.2	6
22	Population Structure of Colletotrichum truncatum in Himachal Pradesh and Identification of Broad-Spectrum Resistant Sources in Capsicum. Agricultural Research, 2017, 6, 296-303.	1.7	5
23	In vitro evaluation of bioagents and fungitoxicants against <i>Fusarium oxysporum</i> and <i>Fusarium solani</i> causing corm rot of saffron (<i>Crocus sativus</i>) in Kashmir, India. Acta Horticulturae, 2018, , 125-132.	0.2	5
24	Delineating binding potential, stability of Sulforaphaneâ€Nâ€acetylâ€cysteine in the active site of histone deacetylase 2 and testing its cytotoxicity against distinct cancer lines through stringent molecular dynamics, DFT and cellâ€based assays. Chemical Biology and Drug Design, 2021, 98, 363-376.	3.2	5
25	Management of corm rot of saffron (<i>Crocus sativus</i> L.) in Kashmir, India. Acta Horticulturae, 2018, , 111-114.	0.2	4
26	Optimizing the Agrobacterium tumefaciens-mediated transformation conditions in Colletotrichum lindemuthianum: a step forward to unravel the functions of pathogenicity arsenals. Letters in Applied Microbiology, 2022, 75, 293-307.	2.2	4
27	Marker Based Screening of F1 (Firdous x Gala) Mapping Population for Major Scab Resistance Gene Rvi6 in Apple (Malus × Domestica). International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2641-2646.	0.1	4
28	Compendium of Colletotrichum graminicola responsive infection-induced transcriptomic shifts in the maize. Plant Gene, 2019, 17, 100166.	2.3	3
29	Population structure of Venturia inaequalis, a hemibiotrophic fungus, under different host resistance specificities in the Kashmir valley. Archives of Microbiology, 2020, 202, 2245-2253.	2.2	3
30	Plant Disease Resistance Genes: From Perception to Signal Transduction. , 2014, , 345-354.		3
31	Molecular marker-based validation of blast resistance gene <i>Pi54</i> and identification of potential donors in temperate high altitude rice (<i>Oryza sativa</i> L.). Indian Journal of Genetics and Plant Breeding, 2017, 77, 266.	0.5	3
32	Distribution of BCMV strains in Kashmir valley and identification of resistant sources of <i>Phaseolus vulgaris</i> . Indian Journal of Genetics and Plant Breeding, 2016, 76, 107.	0.5	3
33	Phylogenetic Relationship of Venturia carpophila, the Causal Agent of Almond Scab from Kashmir Valley as Inferred by ITS nr DNA. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2913-2919.	0.1	3
34	Insights on atypical adult plant resistance phenomenon in Andean bean cultivar Baspa (KRC-8) to Colletotrichum lindemuthianum, the bean anthracnose pathogen. Euphytica, 2022, 218, .	1.2	3
35	Variability in Fusarium species Causing Wilt Disease in Crops: A Transcriptomic Approach to Characterize Dialogue Between Host and Pathogen. , 2013, , 269-293.		2
36	Heterothallism among spatiotemporally diverse Colletotrichum lindemuthianum isolates and its implication in common bean anthracnose resistance breeding in the Northwestern Himalayan region. Indian Phytopathology, 2021, 74, 939-947.	1.2	2

#	Article	IF	CITATIONS
37	Morphometric and genetic characterization of medicinally important accessions of Physalis ixocarpa Brot Bangladesh Journal of Botany, 2020, 48, 105-111.	0.4	2
38	<i>>Venturia crataegi</i> causing scab on <i>Crataegus</i> Â <i>songarica</i> : Morpho-molecular characterization and a new record from India. Applied Biological Research, 2019, 21, 274.	0.2	2
39	Population Genetics of Narcissus Species Reveals High Diversity and Multiple Introductions into Kashmir. Agricultural Research, 2020, 9, 536-542.	1.7	1
40	First report of powdery mildew caused by Phyllactinia pyri-serotinae Sawada on pear (Pyrus communis) Tj ETQo	0 0 0 rgBT ر	/Overlock 10

41 Multiplex PCR based detection method for Venturia species infecting pome and stone fruits. Indian 1.2 1 Phytopathology, 2022, 75, 941-950.	1.2 1
--	-------