Tao Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/184092/publications.pdf

Version: 2024-02-01

		840776	552781
31	705	11	26
papers	citations	h-index	g-index
32	32	32	604
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. Journal of Power Sources, 2019, 430, 104-111.	7.8	164
2	Stabilizing Oxygen Vacancy in Entropy-Engineered CoFe ₂ O ₄ -Type Catalysts for Co-prosperity of Efficiency and Stability in an Oxygen Evolution Reaction. ACS Applied Materials & lnterfaces, 2020, 12, 32548-32555.	8.0	105
3	In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions. Journal of Alloys and Compounds, 2021, 868, 159064.	5.5	57
4	Effects of combinative addition of lanthanum and boron on grain refinement of Al–Si casting alloys. Materials & Design, 2014, 64, 423-426.	5.1	55
5	Azo dye degradation behavior of AlFeMnTiM (M = Cr, Co, Ni) high-entropy alloys. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 124-132.	4.9	38
6	Surface reconstruction induced <i>in situ</i> phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 6432-6441.	10.3	38
7	Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 405-410.	4.9	30
8	Dealloying Generation of Oxygen Vacancies in the Amorphous Nanoporous Ni–Mo–O for Superior Electrocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2020, 3, 1319-1327.	5.1	28
9	Heteroatom Ni alloyed pyrite-phase FeS2 as a pre-catalyst for enhanced oxygen evolution reaction. Electrochimica Acta, 2020, 355, 136821.	5.2	27
10	Highly catalytical performance of nanoporous copper for electro-oxidation of methanol in alkaline media. Materials Chemistry and Physics, 2018, 218, 108-115.	4.0	22
11	Nanocrystalline NiS particles synthesized by mechanical alloying as a promising oxygen evolution electrocatalyst. Materials Letters, 2018, 218, 115-118.	2.6	18
12	Rapid decoloration of azo dye Direct Blue 6 by AlCrFeMn high entropy alloy. RSC Advances, 2018, 8, 41347-41354.	3 . 6	13
13	Effects of Ti and La Additions on the Microstructures and Mechanical Properties of B-Refined and Sr-Modified Al–11Si Alloys. Metals and Materials International, 2018, 24, 1133-1142.	3.4	12
14	Anisotropy of microstructures and mechanical properties in FeCoNiCr0.5 high-entropy alloy prepared via selective laser melting. Rare Metals, 2022, 41, 2047-2054.	7.1	10
15	Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of NixO nanosheet for enhanced water oxidation. Journal of Colloid and Interface Science, 2022, 608, 3030-3039.	9.4	9
16	Microstructure and properties of CrMnFeCoNi high-entropy alloy prepared by mechanical alloying and spark plasma sintering. Powder Metallurgy, 2019, 62, 38-43.	1.7	8
17	Electrochemically reconstructed high-entropy amorphous FeCoNiCrVB as a highly active oxygen evolution catalyst. New Journal of Chemistry, 2022, 46, 8398-8406.	2.8	8
18	Novel synthesis of S-doped anatase TiO2 via hydrothermal reaction of Cu–Ti amorphous alloy. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	7

#	Article	IF	CITATIONS
19	In-situ reconstruction of non-noble multi-metal core-shell oxyfluorides for water oxidation. Journal of Colloid and Interface Science, 2021, 602, 55-63.	9.4	7
20	Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy. Journal of Materials Engineering and Performance, 2018, 27, 2838-2843.	2.5	6
21	Grain Refining Efficiency and the Role of Alloying Elements in Determining the Nucleation Potency of LaB6 in Aluminum Alloys. Jom, 2020, 72, 3725-3732.	1.9	6
22	Element immiscibility assisted Ru@Ni ₃ B as an efficient electrocatalyst toward alkaline and acidic hydrogen evolution reaction. Chemical Communications, 2022, 58, 6741-6744.	4.1	6
23	Efficient photodecomposition of rhodamine B by an Fe-based metallic glass in an oxalic acid solution. RSC Advances, 2016, 6, 92411-92416.	3.6	5
24	Synergistic effects of composition and heat treatment on microstructure and properties of vacuum die cast Al-Si-Mg-Mn alloys. China Foundry, 2018, 15, 117-123.	1.4	5
25	Effects of Grain Refinement on Tensile Properties and Precipitation Kinetics of Al-Si-Mg Alloys Cast in Sand Molds. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1933-1940.	2.1	5
26	Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye. Acta Metallurgica Sinica (English Letters), 2020, 33, 1103-1110.	2.9	5
27	FeCoNiCr0.5Alx High-Entropy Alloys with Dual-Phase Solidification Microstructure and High Compressive Properties. Jom, 2019, 71, 3460-3465.	1.9	4
28	Effects of geometrical characteristics on defect distributions in alloy components produced by selective laser melting. China Foundry, 2021, 18, 369-378.	1.4	4
29	Heterogeneously structured FeCuBP amorphous–nanocrystalline alloy with excellent dye degradation efficiency. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
30	CoCrFeNi Multi-principal Element Alloy Prepared Via Self-propagating High-Temperature Synthesis Plus Investment Casting Method. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 32-35.	2.1	1
31	Design and Development of P/M Fe–P Based Magnetic Friction Material. Physics of Metals and Metallography, 2020, 121, 439-445.	1.0	0