Muriel Derrien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178.		4
2	A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. American Journal of Clinical Nutrition, 2022, 115, 432-443.	2.2	28
3	Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome. BMC Microbiology, 2022, 22, 39.	1.3	31
4	Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends in Microbiology, 2022, 30, 940-947.	3.5	56
5	Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 625-637.	8.2	239
6	A novel stepwise integrative analysis pipeline reveals distinct microbiota-host interactions and link to symptoms in irritable bowel syndrome. Scientific Reports, 2021, 11, 5521.	1.6	4
7	Diet and gut microbiome interactions of relevance for symptoms in irritable bowel syndrome. Microbiome, 2021, 9, 74.	4.9	25
8	A Randomised, Controlled Trial: Effect of a Multi-Strain Fermented Milk on the Gut Microbiota Recovery after Helicobacter pylori Therapy. Nutrients, 2021, 13, 3171.	1.7	20
9	A Fermented Milk Product Containing B. lactis CNCM I-2494 Improves the Tolerance of a Plant-Based Diet in Patients with Disorders of Gut–Brain Interactions. Nutrients, 2021, 13, 4542.	1.7	1
10	Safety and functional enrichment of gut microbiome in healthy subjects consuming a multi-strain fermented milk product: a randomised controlled trial. Scientific Reports, 2020, 10, 15974.	1.6	18
11	Metabolic Response of Faecalibacterium prausnitzii to Cell-Free Supernatants from Lactic Acid Bacteria. Microorganisms, 2020, 8, 1528.	1.6	16
12	Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities. MBio, 2020, 11, .	1.8	103
13	Moving from probiotics to precision probiotics. Nature Microbiology, 2020, 5, 878-880.	5.9	110
14	Consumption of Fermented Plant Foods Is Associated with Systematic Differences in the Human Gut Microbiome and Metabolome. Current Developments in Nutrition, 2020, 4, nzaa062_030.	0.1	0
15	A Fermented Milk Product with B. lactis CNCM I-2494 and Lactic Acid Bacteria Improves Gastrointestinal Comfort in Response to a Challenge Diet Rich in Fermentable Residues in Healthy Subjects. Nutrients, 2020, 12, 320.	1.7	7
16	Consumption of Fermented Foods Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. MSystems, 2020, 5, .	1.7	81
17	The Gut Microbiota in the First Decade of Life. Trends in Microbiology, 2019, 27, 997-1010.	3.5	368
18	Effects of the long-term storage of human fecal microbiota samples collected in RNAlater. Scientific Reports, 2019, 9, 601.	1.6	36

#	Article	IF	CITATIONS
19	Evidence for an association of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor function in patients with irritable bowel syndrome, based on tripartite network analysis. Microbiome, 2019, 7, 45.	4.9	83
20	The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Scientific Reports, 2019, 9, 5398.	1.6	98
21	Fasting breath H2 and gut microbiota metabolic potential are associated with the response to a fermented milk product in irritable bowel syndrome. PLoS ONE, 2019, 14, e0214273.	1.1	12
22	In vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides difficile Colonized Elderly Gut Microbiota. Frontiers in Nutrition, 2019, 6, 184.	1.6	12
23	Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Scientific Reports, 2018, 8, 5098.	1.6	37
24	Fecal chromogranins and secretogranins are linked to the fecal and mucosal intestinal bacterial composition of IBS patients and healthy subjects. Scientific Reports, 2018, 8, 16821.	1.6	10
25	Altered intestinal antibacterial gene expression response profile in irritable bowel syndrome is linked to bacterial composition and immune activation. Neurogastroenterology and Motility, 2018, 30, e13468.	1.6	15
26	Mo1942 - Association Between Dietary Habits and the Gut Metagenome in Irritable Bowel Syndrome. Gastroenterology, 2018, 154, S-859.	0.6	0
27	Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 2017, 106, 171-181.	1.3	775
28	Homeostasis of the gut barrier and potential biomarkers. American Journal of Physiology - Renal Physiology, 2017, 312, G171-G193.	1.6	408
29	High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 2017, 5, 43.	4.9	132
30	Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 2017, 35, 1069-1076.	9.4	581
31	Clostridia from the Gut Microbiome are Associated with Brain Functional Connectivity and Evoked Symptoms in IBS. Gastroenterology, 2017, 152, S40.	0.6	6
32	Brain Structure and Response to Emotional Stimuli as Related to Gut Microbial Profiles in Healthy Women. Psychosomatic Medicine, 2017, 79, 905-913.	1.3	158
33	Rethinking Diet to Aid Human–Microbe Symbiosis. Trends in Microbiology, 2017, 25, 100-112.	3.5	99
34	Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome. Gastroenterology, 2017, 152, 111-123.e8.	0.6	470
35	Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS ONE, 2017, 12, e0184976.	1.1	76
36	Reply. Clinical Gastroenterology and Hepatology, 2016, 14, 1222-1223.	2.4	0

#	Article	IF	CITATIONS
37	Clostridium difficile colonization and antibiotics response in PolyFermS continuous model mimicking elderly intestinal fermentation. Gut Pathogens, 2016, 8, 63.	1.6	13
38	Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E886-E899.	1.8	55
39	Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME Journal, 2016, 10, 2235-2245.	4.4	187
40	Lactulose Challenge Determines Visceral Sensitivity and Severity of Symptoms in Patients With Irritable Bowel Syndrome. Clinical Gastroenterology and Hepatology, 2016, 14, 226-233.e3.	2.4	38
41	Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon. PLoS ONE, 2015, 10, e0142793.	1.1	59
42	753 Identification of a Gut Microbial Signature Linked to Severity of Irritable Bowel Syndrome. Gastroenterology, 2015, 148, S-142-S-143.	0.6	0
43	Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 2015, 23, 354-366.	3.5	474
44	Host lysozyme-mediated lysis of <i>Lactococcus lactis</i> facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7803-7808.	3.3	99
45	Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME Journal, 2015, 9, 1-15.	4.4	703
46	Fermented Dairy Products Modulate Citrobacter rodentium–Induced Colonic Hyperplasia. Journal of Infectious Diseases, 2014, 210, 1029-1041.	1.9	31
47	375 Human Gut Microbial Clusters Correlate With Anatomical Brain Signatures: A Pilot Study. Gastroenterology, 2014, 146, S-82.	0.6	О
48	Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32, 822-828.	9.4	909
49	375 Human gut microbial clusters correlate with anatomical brain signatures: a pilot study. Gastrointestinal Endoscopy, 2014, 79, AB402.	0.5	Ο
50	Transient inflammatory-like state and microbial dysbiosis are pivotal in establishment of mucosal homeostasis during colonisation of germ-free mice. Beneficial Microbes, 2014, 5, 67-77.	1.0	64
51	The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut, 2013, 62, 1306-1314.	6.1	118
52	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	13.7	3,641
53	Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. ISME Journal, 2013, 7, 743-755.	4.4	84
54	Cross-talk between <i>Akkermansia muciniphila</i> and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9066-9071.	3.3	3,474

#	Article	IF	CITATIONS
55	Laxative treatment with polyethylene glycol decreases microbial primary bile salt dehydroxylation and lipid metabolism in the intestine of rats. American Journal of Physiology - Renal Physiology, 2013, 305, G474-G482.	1.6	10
56	Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. American Journal of Physiology - Renal Physiology, 2012, 303, G589-G599.	1.6	330
57	Epithelialâ€microbial crosstalk in polymeric Ig receptor deficient mice. European Journal of Immunology, 2012, 42, 2959-2970.	1.6	102
58	Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome. Gastroenterology, 2012, 143, 913-916.e7.	0.6	2,287
59	Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunology, 2012, 5, 567-579.	2.7	201
60	Dietary Heme Alters Microbiota and Mucosa of Mouse Colon without Functional Changes in Host-Microbe Cross-Talk. PLoS ONE, 2012, 7, e49868.	1.1	99
61	Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucinâ€degradation in humanized rats. Environmental Microbiology, 2011, 13, 2667-2680.	1.8	215
62	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.3	881
63	Impact of microbial transformation of food on health—from fermented foods to fermentation in the gastro-intestinal tract. Current Opinion in Biotechnology, 2011, 22, 211-219.	3.3	104
64	Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. Frontiers in Microbiology, 2011, 2, 166.	1.5	438
65	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	1.5	267
66	The Genome of Akkermansia muciniphila, a Dedicated Intestinal Mucin Degrader, and Its Use in Exploring Intestinal Metagenomes. PLoS ONE, 2011, 6, e16876.	1.1	328
67	Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes, 2010, 1, 254-268.	4.3	421
68	Microbial Community Development in a Dynamic Gut Model Is Reproducible, Colon Region Specific, and Selective for <i>Bacteroidetes</i> and <i>Clostridium</i> Cluster IX. Applied and Environmental Microbiology, 2010, 76, 5237-5246.	1.4	272
69	Phylum XXII. Lentisphaerae Cho, Vergin, Morris and Giovannoni 2004a, 1005VP (Effective publication:) Tj ETQq1	1 0.7843	14 ₄ gBT /Ove
70	The Mucin Degrader <i>Akkermansia muciniphila</i> Is an Abundant Resident of the Human Intestinal Tract. Applied and Environmental Microbiology, 2008, 74, 1646-1648.	1.4	517
71	Intestinal Integrity and <i>Akkermansia muciniphila</i> , a Mucin-Degrading Member of the Intestinal Microbiota Present in Infants, Adults, and the Elderly. Applied and Environmental Microbiology, 2007, 73, 7767-7770.	1.4	540
72	Prebiotics and other microbial substrates for gut functionality. Current Opinion in Biotechnology, 2005, 16, 212-217.	3.3	148

#	Article	IF	CITATIONS
73	The intestinal mucosa as a habitat of the gut microbiota and a rational target for probiotic functionality and safety. Microbial Ecology in Health and Disease, 2004, 16, 137-144.	3.8	11
74	Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1469-1476.	0.8	1,566
75	Microbial Functionality in the Human Gastrointestinal Tract. Microbes and Environments, 2004, 19, 276-280.	0.7	3
76	The Intestinal Mucosa as a Habitat of the Gut Microbiota and a Rational Target for Probiotic Functionality and Safety. Microbial Ecology in Health and Disease, 2004, 16, .	3.8	1