
Magda Blosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840576/publications.pdf Version: 2024-02-01

MACDA RIOSI

#	Article	IF	CITATIONS
1	Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chemistry, 2011, 13, 2091.	4.6	242
2	Microwave-assisted polyol synthesis of Cu nanoparticles. Journal of Nanoparticle Research, 2011, 13, 127-138.	0.8	143
3	Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today, 2012, 195, 120-126.	2.2	124
4	Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. Royal Society Open Science, 2018, 5, 171113.	1.1	110
5	TiO2 based nano-photocatalysis immobilized on cellulose substrates. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 276, 58-64.	2.0	61
6	NanoTiO2@DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles. Journal of Colloid and Interface Science, 2019, 546, 174-183.	5.0	59
7	Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics. Cellulose, 2018, 25, 2755-2765.	2.4	48
8	Au–Ag nanoparticles as red pigment in ceramic inks for digital decoration. Dyes and Pigments, 2012, 94, 355-362.	2.0	47
9	Shape-Related Toxicity of Titanium Dioxide Nanofibres. PLoS ONE, 2016, 11, e0151365.	1.1	47
10	Nano-Sized Ceramic Inks for Drop-on-Demand Ink-Jet Printing in Quadrichromy. Journal of Nanoscience and Nanotechnology, 2008, 8, 1979-1988.	0.9	46
11	Gold Nanoparticle-Containing Membranes from in Situ Reduction of a Gold(III)â^'Aminoethylimidazolium Aurate Salt. Journal of Physical Chemistry C, 2010, 114, 9693-9701.	1.5	41
12	Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Chemosphere, 2018, 196, 482-493.	4.2	40
13	TiO2 based photocatalytic coatings: From nanostructure to functional properties. Chemical Engineering Journal, 2013, 225, 880-886.	6.6	38
14	Micronizing ceramic pigments for inkjet printing: Part I. Grindability and particle size distribution. Ceramics International, 2015, 41, 6498-6506.	2.3	38
15	Multiple endpoints to evaluate pristine and remediated titanium dioxide nanoparticles genotoxicity in lung epithelial A549 cells. Toxicology Letters, 2017, 276, 48-61.	0.4	38
16	Green and easily scalable microwave synthesis of noble metal nanosols (Au, Ag, Cu, Pd) usable as catalysts. New Journal of Chemistry, 2014, 38, 1401-1409.	1.4	36
17	Ink-jet printability of aqueous ceramic inks for digital decoration of ceramic tiles. Dyes and Pigments, 2016, 127, 148-154.	2.0	36
18	Wetting behavior and remarkable durability of amphiphobic aluminum alloys surfaces in a wide range of environmental conditions. Chemical Engineering Journal, 2014, 258, 101-109.	6.6	34

MAGDA BLOSI

#	Article	IF	CITATIONS
19	Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106, 92-99.	1.4	34
20	Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis. Materials, 2016, 9, 550.	1.3	33
21	Polyvinyl alcohol/silver electrospun nanofibers: Biocidal filter media capturing virusâ€size particles. Journal of Applied Polymer Science, 2021, 138, 51380.	1.3	33
22	Structural Relaxation around Cr ³⁺ in YAlO ₃ â^'YCrO ₃ Perovskites from Electron Absorption Spectra. Journal of Physical Chemistry A, 2009, 113, 13772-13778.	1.1	32
23	Sol–gel combustion synthesis of chromium doped yttrium aluminum perovskites. Journal of Sol-Gel Science and Technology, 2009, 50, 449-455.	1.1	30
24	Colloidal characterization of CuO nanoparticles in biological and environmental media. Environmental Science: Nano, 2017, 4, 1264-1272.	2.2	30
25	Microwave-assisted synthesis of Pr–ZrSiO4, V–ZrSiO4 and Cr–YAlO3 ceramic pigments. Journal of the European Ceramic Society, 2009, 29, 2951-2957.	2.8	29
26	Easily scalable synthesis of Ni nanosols suitable for the hydrogenation of 4-nitrophenol to p-aminophenol under mild condition. Chemical Engineering Journal, 2013, 215-216, 616-625.	6.6	29
27	A panel of <i>in vitro</i> tests to evaluate genotoxic and morphological neoplastic transformation potential on <i>Balb/3T3</i> cells by pristine and remediated titania and zirconia nanoparticles. Mutagenesis, 2016, 31, 511-529.	1.0	27
28	Lipopolysaccharide Adsorbed to the Bio-Corona of TiO2 Nanoparticles Powerfully Activates Selected Pro-inflammatory Transduction Pathways. Frontiers in Immunology, 2017, 8, 866.	2.2	27
29	Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. Materials, 2020, 13, 4532.	1.3	26
30	Micronizing ceramic pigments for inkjet printing: Part II. Effect on phase composition and color. Ceramics International, 2015, 41, 6507-6517.	2.3	25
31	Ceramic Ink-Jet Printing for Digital Decoration: Physical Constraints for Ink Design. Journal of Nanoscience and Nanotechnology, 2015, 15, 3552-3561.	0.9	25
32	Hollow-fiber flow field-flow fractionation and multi-angle light scattering as a new analytical solution for quality control in pharmaceutical nanotechnology. Microchemical Journal, 2018, 136, 149-156.	2.3	24
33	Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway. Toxicology Research, 2015, 4, 385-398.	0.9	22
34	Bentonites functionalized by impregnation with TiO 2 , Ag, Pd and Au nanoparticles. Applied Clay Science, 2017, 146, 1-6.	2.6	22
35	In Vitro Toxicity of TiO2:SiO2 Nanocomposites with Different Photocatalytic Properties. Nanomaterials, 2019, 9, 1041.	1.9	21
36	CuO nanoparticle penetration through intact and damaged human skin. New Journal of Chemistry, 2019, 43, 17033-17039.	1.4	18

MAGDA BLOSI

#	Article	lF	CITATIONS
37	Microwave-assisted polyol synthesis of sub-micrometer Y2O3 and Yb-Y2O3 particles for laser source application. Ceramics International, 2010, 36, 103-106.	2.3	17
38	Innovative synthesis of nanostructured composite materials by a spray-freeze drying process: Efficient catalysts and photocatalysts preparation. Catalysis Today, 2019, 334, 193-202.	2.2	16
39	ASINA Project: Towards a Methodological Data-Driven Sustainable and Safe-by-Design Approach for the Development of Nanomaterials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 805096.	2.0	15
40	Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	14
41	Assessing occupational risk in designs of production processes of nano-materials. NanoImpact, 2019, 14, 100149.	2.4	14
42	Multiple approach to test nano TiO2 photo-activity. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 292, 26-33.	2.0	13
43	Pilot- plant study for the photocatalytic/electrochemical degradation of Rhodamine B. Journal of Environmental Chemical Engineering, 2018, 6, 1794-1804.	3.3	12
44	Silica modification of titania nanoparticles enhances photocatalytic production of reactive oxygen species without increasing toxicity potential <i>in vitro</i> . RSC Advances, 2018, 8, 40369-40377.	1.7	12
45	Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO2-Based Materials. Molecules, 2020, 25, 5225.	1.7	12
46	Length-dependent toxicity of TiO ₂ nanofibers: mitigation via shortening. Nanotoxicology, 2020, 14, 433-452.	1.6	11
47	Data Shepherding in Nanotechnology: An Antimicrobial Functionality Data Capture Template. Coatings, 2021, 11, 1486.	1.2	9
48	Nanosilver: An innovative paradigm to promote its safe and active use. Nanolmpact, 2018, 11, 128-135.	2.4	8
49	Influence of spray-coating process parameters on the release of TiO2 particles for the production of antibacterial textile. NanoImpact, 2020, 19, 100245.	2.4	8
50	Data Shepherding in Nanotechnology. The Initiation. Nanomaterials, 2021, 11, 1520.	1.9	8
51	TiO2@BSA nano-composites investigated through orthogonal multi-techniques characterization platform. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112037.	2.5	8
52	Quantifying Emission Factors and Setting Conditions of Use According to ECHA Chapter R.14 for a Spray Process Designed for Nanocoatings—A Case Study. Nanomaterials, 2022, 12, 596.	1.9	7
53	Encapsulation of cationic iridium(iii) tetrazole complexes into a silica matrix: synthesis, characterization and optical properties. New Journal of Chemistry, 2018, 42, 9635-9644.	1.4	6
54	Monitoring and Optimisation of Ag Nanoparticle Spray-Coating on Textiles. Nanomaterials, 2021, 11, 3165.	1.9	6

Magda Blosi

#	Article	IF	CITATIONS
55	Particles Emission from an Industrial Spray Coating Process Using Nano-Materials. Nanomaterials, 2022, 12, 313.	1.9	6
56	Microwave Assisted Synthesis of Yb:Y2O3 Based Materials for Laser Source Application. Advanced Engineering Materials, 2010, 12, 205-209.	1.6	5
57	Ceramized Fabrics and Their Integration in a Semi-Pilot Plant for the Photodegradation of Water Pollutants. Catalysts, 2021, 11, 1418.	1.6	5
58	Monitoring Systems of an Electrospinning Plant for the Production of Composite Nanofibers. , 2019, , 315-337.		3
59	Use of Cotton Textiles Coated by Ir(III) Tetrazole Complexes within Ceramic Silica Nanophases for Photo-Induced Self-Marker and Antibacterial Application. Nanomaterials, 2020, 10, 1020.	1.9	3
60	Highly durable amphiphobic coatings and surfaces: A comparative step-by-step exploration of the design variables. Surface and Coatings Technology, 2021, 421, 127419.	2.2	0