Lautaro Damian Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840565/publications.pdf

Version: 2024-02-01

28 papers 415 citations

11 h-index 752256 20 g-index

29 all docs 29 docs citations

times ranked

29

583 citing authors

#	Article	IF	CITATIONS
1	Live Cell Imaging Unveils Multiple Domain Requirements for In Vivo Dimerization of the Glucocorticoid Receptor. PLoS Biology, 2014, 12, e1001813.	2.6	113
2	Insights on Glucocorticoid Receptor Activity Modulation through the Binding of Rigid Steroids. PLoS ONE, 2010, 5, e13279.	1.1	44
3	Structure of the Glucocorticoid Receptor, a Flexible Protein That Can Adapt to Different Ligands. ChemMedChem, 2010, 5, 649-659.	1.6	25
4	Exploring the Molecular Basis of Action of the Passive Antiglucocorticoid 21-Hydroxy-6,19-epoxyprogesterone. Journal of Medicinal Chemistry, 2008, 51, 1352-1360.	2.9	22
5	New lead compounds in the search for pure antiglucocorticoids and the dissociation of antiglucocorticoid effects. Journal of Steroid Biochemistry and Molecular Biology, 2009, 113, 155-162.	1.2	17
6	Hemisuccinate of 21â€Hydroxyâ€6,19â€Epoxyprogesterone: A Tissueâ€Specific Modulator of the Glucocorticoid Receptor. ChemMedChem, 2008, 3, 1869-1877.	1.6	16
7	In Search of GABA _A Receptor's Neurosteroid Binding Sites. Journal of Medicinal Chemistry, 2019, 62, 5250-5260.	2.9	15
8	Exploring the molecular basis of neurosteroid binding to the \hat{l}^2 3 homopentameric GABA A receptor. Journal of Steroid Biochemistry and Molecular Biology, 2015, 154, 159-167.	1.2	13
9	Structure and dynamics of neurosteroid binding to the $\hat{l}\pm1\hat{l}^22\hat{l}^32$ GABAA receptor. Journal of Steroid Biochemistry and Molecular Biology, 2018, 182, 72-80.	1.2	13
10	Synthesis and GABAA receptor activity of oxygen-bridged neurosteroid analogs. Bioorganic and Medicinal Chemistry, 2008, 16, 3831-3838.	1.4	12
11	Structural Insights into the Ligand Binding Domain of the Glucocorticoid Receptor: A Molecular Dynamics Study. Journal of Chemical Information and Modeling, 2020, 60, 794-804.	2.5	12
12	Synthesis of C(1)–C(11) oxygen-bridged pregnanes. Tetrahedron Letters, 2005, 46, 4235-4238.	0.7	11
13	Synthetic DAF-12 modulators with potential use in controlling the nematode life cycle. Biochemical Journal, 2015, 465, 175-184.	1.7	11
14	The <i>Caenorhabditis elegans</i> DAFâ€12 nuclear receptor: Structure, dynamics, and interaction with ligands. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1798-1809.	1.5	10
15	Neuroprotective action of synthetic steroids with oxygen bridge. Activity on GABAA receptor. Experimental Neurology, 2013, 249, 49-58.	2.0	10
16	Exploring the molecular basis of action of ring <scp>D</scp> aromatic steroidal antiestrogens. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1297-1306.	1.5	10
17	Destabilization of the torsioned conformation of a ligand side chain inverts the LXRβ activity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1577-1586.	1.2	9
18	27-Nor-Δ4-dafachronic acid is a synthetic ligand of Caenorhabditis elegans DAF-12 receptor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2893-2896.	1.0	8

#	Article	IF	CITATIONS
19	Synthesis and activity evaluation of a series of cholanamides as modulators of the liver X receptors. Bioorganic and Medicinal Chemistry, 2018, 26, 1092-1101.	1.4	7
20	Biological activity and ligand binding mode to the progesterone receptor of A-homo analogues of progesterone. Bioorganic and Medicinal Chemistry, 2011, 19, 1683-1691.	1.4	6
21	Mapping the neurosteroid binding sites on glycine receptors. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105388.	1.2	6
22	Fluorinated oxysterol analogues: Synthesis, molecular modelling and LXR \hat{l}^2 activity. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 268-276.	1.2	5
23	21-Hydroxy-6,19-epoxyprogesterone: A Promising Therapeutic Agent and a Molecular Tool for Deciphering Glucocorticoid Action. Mini-Reviews in Medicinal Chemistry, 2018, 18, 428-438.	1.1	5
24	Synthesis and biological evaluation of salpichrolide analogs as antiestrogenic agents. European Journal of Medicinal Chemistry, 2014, 82, 233-241.	2.6	4
25	Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output. PLoS ONE, 2017, 12, e0189588.	1.1	4
26	Cholestenoic acid analogues as inverse agonists of the liver X receptors. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105585.	1.2	4
27	Microwave assisted preparation of C(1)–C(11) oxygen-bridged pregnanes. Steroids, 2011, 76, 1458-1464.	0.8	2
28	Insights into estrogen receptor alpha modulation by cholestenoic acids. Journal of Steroid Biochemistry and Molecular Biology, 2022, 217, 106046.	1.2	1